1. Minimal residual disease, long-term outcome, and IKZF1 deletions in children and adolescents with Down syndrome and acute lymphocytic leukaemia: a matched cohort study.
- Author
-
Michels N, Boer JM, Enshaei A, Sutton R, Heyman M, Ebert S, Fiocco M, de Groot-Kruseman HA, van der Velden VHJ, Barbany G, Escherich G, Vora A, Trahair T, Dalla-Pozza L, Pieters R, Zur Stadt U, Schmiegelow K, Moorman AV, Zwaan CM, and den Boer ML
- Subjects
- Adolescent, Child, Child, Preschool, Female, Humans, Infant, Male, Young Adult, Case-Control Studies, Cohort Studies, Gene Deletion, Prognosis, Down Syndrome complications, Down Syndrome genetics, Ikaros Transcription Factor genetics, Neoplasm, Residual, Precursor Cell Lymphoblastic Leukemia-Lymphoma genetics, Precursor Cell Lymphoblastic Leukemia-Lymphoma mortality, Precursor Cell Lymphoblastic Leukemia-Lymphoma complications, Precursor Cell Lymphoblastic Leukemia-Lymphoma therapy
- Abstract
Background: Patients with Down syndrome and acute lymphocytic leukaemia are at an increased risk of treatment-related mortality and relapse, which is influenced by unfavourable genetic aberrations (eg, IKZF1 deletion). We aimed to investigate the potential underlying effect of Down syndrome versus the effects of adverse cancer genetics on clinical outcome., Method: Patients (aged 1-23 years) with Down syndrome and acute lymphocytic leukaemia and matched non-Down syndrome patients with acute lymphocytic leukaemia (matched controls) from eight trials (DCOG ALL10 and ALL11, ANZCHOG ALL8, AIEOP-BFM ALL2009, UKALL2003, NOPHO ALL2008, CoALL 07-03, and CoALL 08-09) done between 2002 and 2018 across various countries (the Netherlands, the UK, Australia, Denmark, Finland, Iceland, Norway, Sweden, and Germany) were included. Participants were matched (1:3) for clinical risk factors and genetics, including IKZF1 deletion. The primary endpoint was the comparison of MRD levels (absolute MRD levels were categorised into two groups, low [<0·0001] and high [≥0·0001]) between patients with Down syndrome and acute lymphocytic leukaemia and matched controls, and the secondary outcomes were comparison of long-term outcomes (event-free survival, overall survival, relapse, and treatment-related mortality [TRM]) between patients with Down syndrome and acute lymphocytic leukaemia and matched controls. Two matched cohorts were formed: for MRD analyses and for long-term outcome analyses. For both cohorts, matching was based on induction regimen; for the long-term outcome cohort, matching also included MRD-guided treatment group. We used mixed-effect models, Cox models, and competing risk for statistical analyses., Findings: Of 251 children and adolescents with Down syndrome and acute lymphocytic leukaemia, 136 were eligible for analyses and matched to 407 (of 8426) non-Down syndrome patients with acute lymphocytic leukaemia (matched controls). 113 patients with Down syndrome and acute lymphocytic leukaemia were excluded from matching in accordance with predefined rules, no match was available for two patients with Down syndrome and acute lymphocytic leukaemia. The proportion of patients with high MRD at the end of induction treatment was similar for patients with Down syndrome and acute lymphocytic leukaemia (52 [38%] of 136) and matched controls (157 [39%] of 403; OR 0·97 [95% CI 0·64-1·46]; p=0·88). Patients with Down syndrome and acute lymphocytic leukaemia had a higher relapse risk than did matched controls in the IKZF1 deleted group (relapse at 5 years 37·1% [17·1-57·2] vs 13·2% [6·1-23·1]; cause-specific hazard ratio [HR
cs ] 4·3 [1·6-11·0]; p=0·0028), but not in the IKZF1 wild-type group (relapse at 5 years 5·8% [2·1-12·2] vs 8·1% [5·1-12·0]; HRcs 1·0 [0·5-2·1]; p=0·99). In addition to increased induction deaths (15 [6%] of 251 vs 69 [0·8%] of 8426), Down syndrome and acute lymphocytic leukaemia was associated with a higher risk of post-induction TRM compared with matched controls (TRM at 5 years 12·2% [7·0-18·9] vs 2·7% [1·3-4·9]; HRcs 5·0 [2·3-10·8]; p<0·0001)., Interpretation: Induction treatment is equivalently effective for patients with Down syndrome and acute lymphocytic leukaemia and for matched patients without Down syndrome. Down syndrome itself provides an additional risk in individuals with IKZF1 deletions, suggesting an interplay between the germline environment and this poor risk somatic aberration. Different treatment strategies are warranted considering both inherent risk of relapse and high risk of TRM., Funding: Stichting Kinder Oncologisch Centrum Rotterdam and the Princess Máxima Center Foundation, NHMRC Australia, The Cancer Council NSW, Tour de Cure, Blood Cancer UK, UK Medical Research Council, Children with Cancer, Swedish Society for Pediatric Cancer, Swedish Childhood Cancer Fund, Danish Cancer Society and the Danish Childhood Cancer Foundation., Competing Interests: Declaration of interests KS reports speaker or advisory board honoraria from Jazz Pharmaceuticals and Servier; speaker fees from Amgen and Medscape; and an educational grant from Servier. CMZ reports grants from Pfizer, Takeda, AbbVie, and Jazz Pharmaceuticals; consulting fees from Novartis, Incyte, Pfizer, Jazz Pharmaceuticals, Takeda, and Abbvie; speaker fees from Pfizer; travel expenses from Jazz Pharmaceuticals; participation on data safety monitoring committees or advisory boards for Novartis, and Incyte; and is co-chair of the Innovative Therapies for Children with Cancer heamatological malignancies committee. GB reports grants from Swedish Society Pediatric Cancer. TT reports foundation funding to Children's Cancer Institute; project funding from Tour de Cure; and ownership of stock or stock options in CSL, Cochlear, Medical Developments International, Osteopore, and Sonic Healthcare. RS reports grants paid to the University of New South Wales from National Health and Medical Research Council Australia, Cancer Counsel New South Wales, and Cancer Australia; and foundation funding to the Children's Cancer Institute from Tour de Cure and Australian Cancer Research Foundation. All other authors declare no competing interests., (Copyright © 2021 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY-NC-ND 4.0 license. Published by Elsevier Ltd.. All rights reserved.)- Published
- 2021
- Full Text
- View/download PDF