1. Adipose-derived mesenchymal stromal cells alleviate intestinal fibrosis: The role of tumor necrosis factor-stimulated gene 6 protein.
- Author
-
Li X, Chen J, Xie M, Xiong Z, Yin S, Jin L, Yu Z, Wang C, Zhang F, Luo D, Guo J, Huang D, Tang H, Chen H, Lan P, and Lian L
- Subjects
- Animals, Humans, Mice, Male, Dextran Sulfate, Trinitrobenzenesulfonic Acid, Adipose Tissue metabolism, Transforming Growth Factor beta1 metabolism, Cells, Cultured, Female, Fibroblasts metabolism, Colon pathology, Colon metabolism, Colitis chemically induced, Colitis therapy, Colitis pathology, Mesenchymal Stem Cells metabolism, Fibrosis, Mice, Inbred BALB C, Mesenchymal Stem Cell Transplantation, Mice, Inbred C57BL, Cell Adhesion Molecules metabolism, Cell Adhesion Molecules genetics, Crohn Disease therapy, Crohn Disease pathology, Crohn Disease metabolism, Smad2 Protein metabolism, Disease Models, Animal
- Abstract
Background: The therapeutic potential of adipose-derived mesenchymal stromal cells (AMSCs) in the treatment of intestinal fibrosis occured in patients with Crohn's disease (CD) remains unclear. Tumor necrosis factor-stimulated gene 6 (TSG6) protein plays a critical role in inflammation regulation and tissue repair. This study aimed to determine if AMSCs attenuate intestinal fibrosis by secreting paracrine TSG6 protein and explore the underlying mechanisms., Methods: Two murine models for intestinal fibrosis were established using 2,4,6-trinitrobenzene sulfonic acid in BALB/c mice and dextran sulfate sodium in C57BL/6 mice. Primary human fibroblasts and CCD-18co cells were incubated with transforming growth factor (TGF)-β1 to build two fibrosis cell models in vitro., Results: Intraperitoneally administered AMSCs attenuated intestinal fibrosis in the two murine models, as evidenced by significant alleviation of colon shortening, collagen protein deposits, and submucosal thickening, and also decrease in the endoscopic and fibrosis scores (P < 0.001). Although intraperitoneally injected AMSCs did not migrate to the colon lesions, high levels of TSG6 expression and secretion were noticed both in vivo and in vitro. Similar to the role of AMSCs, injection of recombinant human TSG6 attenuated intestinal fibrosis in the mouse models, which was not observed with the administration of AMSCs with TSG6 knockdown or TSG6 neutralizing antibody. Mechanistically, TSG6 alleviates TGF-β1-stimulated upregulation of α-smooth muscle actin (αSMA) and collagen I by inhibiting Smad2 phosphorylation. Furthermore, the expression of TSG6 is lower in intestinal fibrosis tissue of patients with Crohn's disease and can reduce pro-fibrotic protein (αSMA) secretion from primary ileal fibrotic tissue., Conclusions: AMSCs attenuate intestinal fibrosis by secreting paracrine TSG6 protein, which inhibits Smad2 phosphorylation. TSG6, a novel anti-fibrotic factor, could potentially improve intestinal fibrosis treatments., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 Elsevier B.V. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF