1. Comparative analysis of ginsenosides in human glucocorticoid receptor binding, transactivation, and transrepression.
- Author
-
Hu C, Lau AJ, Wang R, and Chang TKH
- Subjects
- Hep G2 Cells, Humans, Ligands, Protein Binding, Protein Domains, Receptors, Glucocorticoid chemistry, Ginsenosides metabolism, Ginsenosides pharmacology, Receptors, Glucocorticoid genetics, Receptors, Glucocorticoid metabolism, Transcriptional Activation drug effects
- Abstract
Conflicting data exist on the effect of ginsenosides on transactivation of human glucocorticoid receptor α (herein referred to as glucocorticoid receptor), and relatively little is known regarding the effect of these chemicals on transrepression of this receptor. We investigated the effect of 20(S)-protopanaxadiol (PPD), PPD-type ginsenosides (Rb1, Rb2, Rc, Rd, Rh2, and Compound K), 20(S)-protopanaxatriol (PPT), and PPT-type ginsenosides (Re, Rf, Rg1, and Rh1) on glucocorticoid receptor binding, transactivation, and transrepression. Each ginsenoside was less efficacious than dexamethasone (positive control) in binding to the ligand-binding domain of glucocorticoid receptor. Among the ginsenosides investigated, Rh2 had the smallest IC
50 value (15 ± 1µM), whereas it was 0.02 ± 0.01µM for dexamethasone. In contrast to dexamethasone, none of the ginsenosides influenced glucocorticoid receptor transactivation or transrepression in LS180 human colorectal adenocarcinoma cells, as assessed in a dual-luciferase reporter gene assay. Rh2 did not affect the endogenous mRNA level of tyrosine aminotransferase (marker for glucocorticoid receptor transactivation) or corticosteroid-binding globulin (marker for glucocorticoid receptor transrepression) in HepG2 human hepatocellular carcinoma cells. This chemical also did not alter the response by a glucocorticoid receptor agonist (dexamethasone or Compound A) in the dual-luciferase reporter gene assay or target gene expression assay. In conclusion, ginsenosides were less efficacious and less potent than dexamethasone in binding to the ligand-binding domain of glucocorticoid receptor. The number of glycosylated groups was associated with a decrease in receptor binding potency. PPD-type and PPT-type ginsenosides are not modulators of glucocorticoid receptor transactivation or transrepression in LS180 and HepG2 cells., (Copyright © 2017 Elsevier B.V. All rights reserved.)- Published
- 2017
- Full Text
- View/download PDF