1. Crystal structure and molecular characterization of NADP + -farnesol dehydrogenase from cotton bollworm, Helicoverpaarmigera.
- Author
-
Kumar R, Das J, Mahto JK, Sharma M, Vivek S, Kumar P, and Sharma AK
- Subjects
- Animals, Binding Sites, Gossypium, Insecta metabolism, Juvenile Hormones metabolism, NAD (+) and NADP (+) Dependent Alcohol Oxidoreductases, NADP metabolism, NADPH Dehydrogenase metabolism, Farnesol metabolism, Moths genetics, Moths metabolism
- Abstract
Farnesol dehydrogenase (FDL) orchestrates the oxidation reaction catalyzing farnesol to farnesal, a key step in the juvenile hormone (JH) biosynthesis pathway of insects and hence, represents a lucrative target for developing insect growth regulators (IGRs). However, information on the structural and functional characterization of JH-specific farnesol dehydrogenase in insects remains elusive. Herein, we identified a transcript that encodes farnesol dehydrogenase (HaFDL) from Helicoverpa armigera, a major pest of cotton. The investigations of molecular assembly, biochemical analysis and spatio-temporal expression profiling showed that HaFDL exists as a soluble homo-tetrameric form, exhibits a broad substrate affinity and is involved in the JH-specific farnesol oxidation in H. armigera. Additionally, the study presents the first crystal structure of the HaFDL-NADP enzyme complex determined at 1.6 Å resolution. Structural analysis revealed that HaFDL belongs to the NADP-specific cP2 subfamily of the classical short-chain dehydrogenase/reductase (SDR) family and exhibits typical structural features of those enzymes including the conserved nucleotide-binding Rossman-fold. The isothermal titration calorimetry (ITC) showed a high binding affinity (dissociation constant, Kd, 3.43 μM) of NADP to the enzyme. Comparative structural analysis showed a distinct substrate-binding pocket (SBP) loop with a spacious and hydrophobic substrate-binding pocket in HaFDL, consistent with the biochemically observed promiscuous substrate specificity. Finally, based on the crystal structure, substrate modeling and structural comparison with homologs, a two-step reaction mechanism is proposed. Overall, the findings significantly impact and contribute to our understanding of farnesol dehydrogenase functional properties in JH biosynthesis in H. armigera., (Copyright © 2022 Elsevier Ltd. All rights reserved.)
- Published
- 2022
- Full Text
- View/download PDF