1. Involvement of nitric oxide in 3-nitropropionic acid-induced depression of spinal reflexes in neonatal rat spinal cord in vitro.
- Author
-
Gupta R and Deshpande SB
- Subjects
- Animals, Animals, Newborn, Female, Hemoglobins pharmacology, In Vitro Techniques, Male, NG-Nitroarginine Methyl Ester pharmacology, Rats, Reflex, Monosynaptic drug effects, Spinal Cord metabolism, Time Factors, Nitric Oxide metabolism, Nitro Compounds pharmacology, Propionates pharmacology, Reflex drug effects, Spinal Cord drug effects, Spinal Cord physiology
- Abstract
The objective of the present investigation is to study the involvement of nitric oxide (NO) in 3-nitropropionic acid (3-NPA)-induced depression of spinal reflexes. Experiments were conducted on preparations of hemisected spinal cord isolated from 4 to 8 day old rats. Stimulation of a dorsal root evoked reflex potentials (monosynaptic, MSR; polysynaptic, PSR) in the corresponding segmental ventral root. Superfusion of 3-NPA (3.4 mM) depressed the spinal reflexes in a time-dependent manner and the reflexes were abolished after 35 min. The time required to produce 50% depression of the reflexes (T-50) was 17.8+/-5.3 min for MSR and 17.5+/-2.1 min for PSR. L-NAME (Nomega-nitro-L-arginine methyl ester; 100 microM), a nitric oxide synthase inhibitor, antagonized the 3-NPA (3.4 mM)-induced depression of reflexes and increased the T-50 values (34 and 30 min for MSR and PSR, respectively) significantly (P<0.05). In addition, hemoglobin (Hb, 100 microM), a NO scavenger, blocked the 3-NPA-induced depression of reflexes significantly (P<0.05). T-50 values in Hb pretreated cords were 57 and 45 min for MSR and PSR, respectively which were greater than the cords pretreated with L-NAME. The nitrite (NO(2)(-)) content of the 3-NPA exposed cords was 84 microM/g of tissue which was significantly greater than the control (13 microM/g; P<0.05). Pretreatment of cords with L-NAME or Hb antagonized the 3-NPA-induced increase in NO(2)(-). The results indicate that NO produced by 3-NPA is involved in the 3-NPA-induced depression of spinal reflexes.
- Published
- 2009
- Full Text
- View/download PDF