1. Development and validation of a deep learning-based method for automatic measurement of uterus, fibroid, and ablated volume in MRI after MR-HIFU treatment of uterine fibroids.
- Author
-
Slotman DJ, Bartels LW, Nijholt IM, Huirne JAF, Moonen CTW, and Boomsma MF
- Subjects
- Humans, Female, Magnetic Resonance Imaging methods, Adult, Reproducibility of Results, Tumor Burden, Middle Aged, Treatment Outcome, Magnetic Resonance Imaging, Interventional methods, Uterus diagnostic imaging, Uterus pathology, Leiomyoma diagnostic imaging, Leiomyoma therapy, Deep Learning, Uterine Neoplasms diagnostic imaging, Uterine Neoplasms therapy, High-Intensity Focused Ultrasound Ablation methods
- Abstract
Introduction: The non-perfused volume divided by total fibroid load (NPV/TFL) is a predictive outcome parameter for MRI-guided high-intensity focused ultrasound (MR-HIFU) treatments of uterine fibroids, which is related to long-term symptom relief. In current clinical practice, the MR-HIFU outcome parameters are typically determined by visual inspection, so an automated computer-aided method could facilitate objective outcome quantification. The objective of this study was to develop and evaluate a deep learning-based segmentation algorithm for volume measurements of the uterus, uterine fibroids, and NPVs in MRI in order to automatically quantify the NPV/TFL., Materials and Methods: A segmentation pipeline was developed and evaluated using expert manual segmentations of MRI scans of 115 uterine fibroid patients, screened for and/or undergoing MR-HIFU treatment. The pipeline contained three separate neural networks, one per target structure. The first step in the pipeline was uterus segmentation from contrast-enhanced (CE)-T1w scans. This segmentation was subsequently used to remove non-uterus background tissue for NPV and fibroid segmentation. In the following step, NPVs were segmented from uterus-only CE-T1w scans. Finally, fibroids were segmented from uterus-only T2w scans. The segmentations were used to calculate the volume for each structure. Reliability and agreement between manual and automatic segmentations, volumes, and NPV/TFLs were assessed., Results: For treatment scans, the Dice similarity coefficients (DSC) between the manually and automatically obtained segmentations were 0.90 (uterus), 0.84 (NPV) and 0.74 (fibroid). Intraclass correlation coefficients (ICC) were 1.00 [0.99, 1.00] (uterus), 0.99 [0.98, 1.00] (NPV) and 0.98 [0.95, 0.99] (fibroid) between manually and automatically derived volumes. For manually and automatically derived NPV/TFLs, the mean difference was 5% [-41%, 51%] (ICC: 0.66 [0.32, 0.85])., Conclusion: The algorithm presented in this study automatically calculates uterus volume, fibroid load, and NPVs, which could lead to more objective outcome quantification after MR-HIFU treatments of uterine fibroids in comparison to visual inspection. When robustness has been ascertained in a future study, this tool may eventually be employed in clinical practice to automatically measure the NPV/TFL after MR-HIFU procedures of uterine fibroids., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 Elsevier B.V. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF