1. Discovery of N-(1,4-Benzoxazin-3-one) urea analogs as Mode-Selective TRPV1 antagonists.
- Author
-
Huang G, Jung A, Li LX, Do N, Jung S, Jeon Y, Zuo D, Thanh La M, Van Manh N, Blumberg PM, Yoon H, Lee Y, Ann J, and Lee J
- Subjects
- Structure-Activity Relationship, Humans, Molecular Structure, Animals, Capsaicin pharmacology, Capsaicin chemistry, Drug Discovery, Dose-Response Relationship, Drug, TRPV Cation Channels antagonists & inhibitors, TRPV Cation Channels metabolism, Benzoxazines chemistry, Benzoxazines pharmacology, Benzoxazines chemical synthesis, Urea analogs & derivatives, Urea chemistry, Urea pharmacology, Urea chemical synthesis
- Abstract
A series of 1,4-benzoxazin-3-one analogs were investigated to discover mode-selective TRPV1 antagonists, since such antagonists are predicted to minimize target-based adverse effects. Using the high-affinity antagonist 2 as the lead structure, the structure activity relationship was studied by modifying the A-region through incorporation of a polar side chain on the benzoxazine and then by changing the C-region with a variety of substituted pyridine, pyrazole and thiazole moieties. The t-butyl pyrazole and thiazole C-region analogs provided high potency as well as mode-selectivity. Among them, antagonist 36 displayed potent and capsaicin-selective antagonism with IC
50 = 2.31 nM for blocking capsaicin activation and only 47.5 % inhibition at 3 µM concentration toward proton activation, indicating that more than a 1000-fold higher concentration of 36 was required to inhibit proton activation than was required to inhibit capsaicin activation. The molecular modeling study of 36 with our homology model indicated that two π-π interactions with the Tyr511 and Phe591 residues by the A- and C-region and hydrogen bonding with the Thr550 residue by the B-region were critical for maintaining balanced and stable binding. Systemic optimization of antagonist 2, which has high-affinity but full antagonism for activators of all modes, led to the mode-selective antagonist 36 which represents a promising step in the development of clinical TRPV1 antagonists minimizing side effects such as hyperthermia and impaired heat sensation., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 Elsevier Ltd. All rights reserved.)- Published
- 2024
- Full Text
- View/download PDF