1. Evaluation for phosphorus accumulation and removal capability of nine species in the Polygonaceae to excavate amphibious superstars used for phosphorus-phytoextraction.
- Author
-
Ye D, Xie M, Zhang X, Huang H, Yu H, Zheng Z, Wang Y, and Li T
- Subjects
- Biodegradation, Environmental, Phosphorus, Plants, Soil, Polygonum, Soil Pollutants
- Abstract
Reducing excessive phosphorus (P) from both soils and eutrophic waters is attractive to achieve environmental P balance, and P-phytoextraction by amphibious plants with great biomass and P uptake is an amazing method, as already reported for P-accumulating plant, Polygonum hydropiper. However, it is still unknown how widespread high P tolerance and great P accumulation is among species in the Polygonaceae, and if there are new amphibious superstars used for P-phytoextraction. We used six Polygonum species and three non-Polygonum species to compare P accumulation and removal capability in hydroponics and soils with different P treatments. In high P hydroponics, all species showed superiority in growth and P accumulation without P toxicity, except for F. multiflora. In high P soils, all species showed much better growth performance with green leaves at 8 weeks, with shoot biomass being 3.60-29.49 g plant
-1 . At 8 weeks, Polygonum species displayed obviously higher shoot P accumulation (31.32-152.37 mg plant-1 ), P extraction ratio (3.16%-15.36%), maximum potential P removal (13.89-67.59 kg ha-1 ), and much lower plant effective number (7-32) than non-Polygonum species under high P soils. Besides, P. lapathifolium, P. divaricatum and P. orientale ranked the top three in growth with P concentration more than 10 mg g-1 dry weight in hydroponics and showed dominant advantage in P accumulation and P removal from high P soils. Through the cluster analysis, P. lapathifolium was always separated into a class, and P. divaricatum and P. orientale more likely clustered together. It is therefore that P. lapathifolium, P. divaricatum and P. orientale are tolerant to high P and attractive in P accumulation and P removal from high P waters and soils, and thus can be used as new amphibious superstars for P-phytoextraction, particularly P. lapathifolium., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2022 Elsevier Ltd. All rights reserved.)- Published
- 2022
- Full Text
- View/download PDF