1. Exploring strategies for kitchen waste treatment and remediation from the perspectives of microbial ecology and genomics.
- Author
-
Gu Z, He L, Liu T, Xing M, Feng L, and Luo G
- Subjects
- Animals, Biodegradation, Environmental, Metagenomics, Genomics, Composting, Soil Microbiology, Lignin metabolism, Refuse Disposal methods, Bacteria metabolism, Bacteria genetics, Ecology, Oligochaeta, Sewage microbiology
- Abstract
Nowadays, the rapid growth of population has led to a substantial increase in kitchen waste and wasted sludge. Kitchen waste is rich in organic matter, including lignocellulose. Synergistic treatment involving kitchen waste and wasted sludge can enhance treatment process. Vermicomposting can facilitate microbial activities on organic matter. Nevertheless, the underlying mechanisms remain unclear. In this study, metagenomics was used to analyze microbial functional genes in vermicomposting. Redundancy analysis found that TOC, TN and DTN adversely affect earthworm growth and reproduction. The relative abundance of Bacteroidetes and Firmicutes increased with earthworms, thereby potentially augmenting lignocellulose degradation. The predominant functional genes included amino acid, carbohydrate, and inorganic ion conversion and metabolism. Metagenomics analysis demonstrated that GH1, GH3, GH5, GH6, GH9, GH12, GH44, GH48 and GH74, GT41, GT4, GT2, and GT51 were dominant. Furthermore, there was higher abundance of carbohydrate-active enzymes in the vermicomposting, particularly during the later phases (30-45 days). Co-occurrence network revealed that Cellvibrio in the vermicomposting exhibited a relatively dense positive correlation with other microbial groups. The findings elucidated the mechanism of vermicomposting as a promising approach for managing kitchen waste and wasted sludge., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 Elsevier Ltd. All rights reserved.)
- Published
- 2025
- Full Text
- View/download PDF