1. Catalytic and antimicrobial potential of green synthesized Au and Au@Ag core-shell nanoparticles.
- Author
-
Rani P, Varma RS, Singh K, Acevedo R, and Singh J
- Subjects
- Escherichia coli, Kinetics, Anti-Bacterial Agents pharmacology, Gold pharmacology, Metal Nanoparticles toxicity, Anti-Infective Agents
- Abstract
It has been a never-ending quest to design a safe, cost-effective, and environmentally acceptable technology for eliminating contaminants from water and countering antibiotic resistance. Herein, a waste leaf extract from the abundant and renewable plant, Brassica oleracea var. gongylodes, is introduced as a cost-effective and sustainable means to generate gold (Au) and Au@Ag core-shell nanoparticles (NPs). In comparison to the bare Au NPs, bimetallic NPs demonstrated improved catalytic and antibacterial capabilities. The reduction process conforms to the pseudo-first-order kinetic, and apparent rate constant (k
app ) was calculated to be 0.46 min-1 , according to the kinetic analysis. With both microbial pathogens, E. coli (Gram-negative) and B. subtilis (Gram-positive), an increment of Au and Au@Ag NPs lead to a considerable improvement in the zone of clearance. The present outcome is a step forward in the establishment of a viable and cost-effective catalytic and antibacterial platform based on bimetallic NPs that could be generated in an inexpensive and eco-friendly manner., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2023 Elsevier Ltd. All rights reserved.)- Published
- 2023
- Full Text
- View/download PDF