1. A flexible pressure sensor with interference immunity capability
- Author
-
Huan Liu, Rui Wang, Junyao Wang, Xingyu Chen, Yunpeng Li, Bowen Cui, Tianhong Lang, and Weihua Zhu
- Subjects
Electrical and Electronic Engineering ,Industrial and Manufacturing Engineering - Abstract
Purpose Flexible pressure sensor arrays have promising applications in analog haptics, reconfiguration of sensory functions, artificial intelligence, wearable devices and human-computer interaction. The force disturbance generated by the connecting material between the sensor array units will reduce the detection accuracy of the unit. The purpose of this paper is to propose a flexible pressure sensor with interference immunity capability. A C-type bridge flexible piezoelectric structure is used to improve the pressure perturbation. The interference immunity capability of the sensor has been improved. Design/methodology/approach In this paper, a C-type pressure sensor array structure by rapid injection moulding is manufactured through the positive piezoelectric effect of a piezoelectric material. The feasibility of C-type interference immunity structure in a flexible sensor array is verified by further analysis and experiment. A flexible pressure sensor array with C-type interference immunity structure has been proposed. Findings In this paper, we present the results of the perturbation experiment results of the C-type pressure sensor array, showing that the perturbation error is less than 8%. The test of the flexible sensor array show that the sensor can identify the curved angle of up to 120 °, and the output sensitivity of the sensor in the horizontal state reaches 0.12 V/N, and the sensor can withstand the pressure of 80 N. The flexible sensor can work stably in the stretch rate range of 0–8.6% and the stretch length range of 0–6 mm. Originality/value In this paper, C-type pressure sensor array structure is fabricated by rapid injection moulding for the first time. The research in this paper can effectively reduce the disturbance of input pressure on the sensor’s internal array and improve the output accuracy. The sensor can intuitively reflect the number of fingers sliding on the sensor by the order in which the maximum voltage appears. Due to the strong interference immunity capability and flexibility of the flexible sensor array mechanism, it has a broad application prospect in the practical fields of haptic simulation, perceptual function reconstruction, artificial intelligence, wearable devices and human–computer interaction.
- Published
- 2023
- Full Text
- View/download PDF