1. Predicting Alcohol-Related Memory Problems in Older Adults: A Machine Learning Study with Multi-Domain Features
- Author
-
Chella Kamarajan, Ashwini K. Pandey, David B. Chorlian, Jacquelyn L. Meyers, Sivan Kinreich, Gayathri Pandey, Stacey Subbie-Saenz de Viteri, Jian Zhang, Weipeng Kuang, Peter B. Barr, Fazil Aliev, Andrey P. Anokhin, Martin H. Plawecki, Samuel Kuperman, Laura Almasy, Alison Merikangas, Sarah J. Brislin, Lance Bauer, Victor Hesselbrock, Grace Chan, John Kramer, Dongbing Lai, Sarah Hartz, Laura J. Bierut, Vivia V. McCutcheon, Kathleen K. Bucholz, Danielle M. Dick, Marc A. Schuckit, Howard J. Edenberg, and Bernice Porjesz
- Subjects
random forests ,Development ,alcohol use disorder ,Basic Behavioral and Social Science ,alcohol-related memory problems ,Behavioral Neuroscience ,default mode network ,Substance Misuse ,Alcohol Use and Health ,Clinical Research ,alcohol use disorder (AUD) ,EEG source functional connectivity ,Behavioral and Social Science ,Genetics ,2.1 Biological and endogenous factors ,Psychology ,Aetiology ,General Psychology ,Ecology, Evolution, Behavior and Systematics ,Prevention ,Neurosciences ,Brain Disorders ,Alcoholism ,Mental Health ,Good Health and Well Being ,Neurological ,Cognitive Sciences - Abstract
Memory problems are common among older adults with a history of alcohol use disorder (AUD). Employing a machine learning framework, the current study investigates the use of multi-domain features to classify individuals with and without alcohol-induced memory problems. A group of 94 individuals (ages 50-81 years) with alcohol-induced memory problems (Memorygroup) were compared with a matchedControlgroup who did not have memory problems. The Random Forests model identified specific features from each domain that contributed to the classification of Memory vs. Control group (AUC=88.29%). Specifically, individuals from the Memory group manifested a predominant pattern of hyperconnectivity across the default mode network regions except some connections involving anterior cingulate cortex which were predominantly hypoconnected. Other significant contributing features were (i) polygenic risk scores for AUD, (ii) alcohol consumption and related health consequences during the past 5 years, such as health problems, past negative experiences, withdrawal symptoms, and the largest number of drinks in a day during the past 12 months, and (iii) elevated neuroticism and increased harm avoidance, and fewer positive “uplift” life events. At the neural systems level, hyperconnectivity across the default mode network regions, including the connections across the hippocampal hub regions, in individuals with memory problems may indicate dysregulation in neural information processing. Overall, the study outlines the importance of utilizing multidomain features, consisting of resting-state brain connectivity collected ∼18 years ago, together with personality, life experiences, polygenic risk, and alcohol consumption and related consequences, to predict alcohol-related memory problems that arise in later life.
- Published
- 2023