1. Effects of UV photodegradation on subsequent microbial decomposition of Bromus diandrus litter
- Author
-
Lin, Yang, Scarlett, Rachel D, and King, Jennifer Y
- Subjects
Climate-Related Exposures and Conditions ,Photo-oxidation ,Photo-mineralization ,Dryland ,Grass ,Invasive species ,Drought ,Environmental Sciences ,Biological Sciences ,Agricultural and Veterinary Sciences ,Agronomy & Agriculture - Abstract
Aims: Photodegradation acts as a direct contributor to litter decomposition in arid and semi-arid ecosystems. However, its indirect effects are unclear. Does photodegradation condition litter for subsequent microbial decomposition? Methods: We conditioned litter of Bromus diandrus with ambient or reduced ultraviolet (UV) radiation and three periods of exposure (summer, summer-winter, and 1 year) in a California annual grassland. We then investigated how field UV exposure affected subsequent microbial decomposition of litter using a controlled laboratory incubation. Results: Surprisingly, microbial decomposition was decreased by UV radiation when the exposure occurred during summer but was unaffected by UV treatment for exposure longer than summer. Litter lignin concentrations did not explain these results, as they were not affected by UV radiation for any of the exposure periods. However, for the summer period exposure, UV radiation was associated with decreased litter N concentration, which corresponded with lowered subsequent microbial activity. Conclusions: Our results suggest a new mechanism through which photodegradation interacts with litter microbial decomposition: photodegradation may decrease microbial decomposition through inhibition of microbial N immobilization. Our results imply that solar radiation can interact with litter N cycling dynamics to influence litter decomposition processes.
- Published
- 2015