11 results on '"Jing-Jiang Zhou"'
Search Results
2. Effects of abiotic stresses on the expression of chitinase-like genes in Acyrthosiphon pisum
- Author
-
Chunchun Li, Inzamam Ul Haq, Aroosa Khurshid, Yan Tao, Peter Quandahor, Jing-Jiang Zhou, and Chang-Zhong Liu
- Subjects
Acyrthosiphon pisum ,chitinase ,expression profiles ,phylogenetic analysis ,20hydroxyecdysone ,Physiology ,QP1-981 - Abstract
Insect chitinases play a crucial part to digest chitin in the exoskeleton during the molting process. However, research on insect chitinase related to the environmental stress response is very limited. This study was the first conducted to expression analysis of chitinase- related genes in A. pisum under abiotic stresses. Here, we identified five chitinase-like proteins (ApIDGF, ApCht3, ApCht7, ApCht10 and ApENGase), and clustered them into five groups (group II, III, V, Ⅹ, and ENGase). Developmental expression analysis revealed that the five A. pisum chitinase-related genes were expressed at whole developmental stages with different relative expression patterns. When aphids were exposed to various abiotic stresses including temperature, insecticide and the stress 20-hydroxyecdysone (20E), all five chitinase genes were differentially expressed in A. pisum. The results showed that insecticide such as imidacloprid down-regulated the expression of these five Cht-related genes. Analysis of temperature stress of A. pisum chitinase suggested that ApCht7 expression was high at 10°C, which demonstrates its important role in pea aphids under low temperature. Conversely, ApCht10 was more active under high temperature stress, as it was significantly up-regulated at 30°C. Besides, 20E enhanced ApCht3 and ApCht10 expression in A. pisum, but reduced ApCht7 expression. These findings provide basic information and insights for the study of the role of these genes under abiotic stress, which advances our knowledge in the management of pea aphids under multiple stresses.
- Published
- 2022
- Full Text
- View/download PDF
3. Diagnostic Value of Metagenomic Next-Generation Sequencing for Pulmonary Infection in Intensive Care Unit and Non-Intensive Care Unit Patients
- Author
-
Jing-Jiang Zhou, Wei-Chao Ding, Yan-Cun Liu, Yu-Lei Gao, Lei Xu, Run-Lu Geng, Ying Ye, and Yan-Fen Chai
- Subjects
metagenomic next-generation sequencing ,intensive care unit ,diagnosis ,pulmonary infection ,immunocompromised patients ,Microbiology ,QR1-502 - Abstract
ObjectiveTo evaluate the diagnostic performance of metagenomic next-generation sequencing (mNGS) and culture in pathogen detection among intensive care unit (ICU) and non-ICU patients with suspected pulmonary infection.MethodsIn this prospective study, sputum samples were collected from patients with suspected pulmonary infection for 2 consecutive days and then subjected to DNA or RNA sequencing by mNGS or culture; 62 ICU patients and 60 non-ICU patients were admitted. In the end, comparisons were made on the pathogen species identified by mNGS and culture, the overall performance of these two methods in pathogen detection, and the most common pathogens detected by mNGS between the ICU and non-ICU groups.ResultsIn DNA and RNA sequencing, the positive rate of pathogen detection reached 96.69% (117/121) and 96.43% (108/112), respectively. In culture tests, the positive rate of the pathogen was 39.34% (48/122), much lower than that of DNA and RNA sequencing. In general, the positive rate of pathogen detection by sputum mNGS was significantly higher than that of sputum culture in the total and non-ICU groups (p < 0.001) but did not show a significant difference when compared to the result of sputum culture in the ICU group (p = 0.08). Haemophilus spp., Candida albicans, Enterococcus spp., and viruses from the mNGS results were excluded before comparing the overall performance of these two methods in pathogen detection. Specifically, among the 10 most common bacteria implied from the mNGS results, significant differences were observed in the number of cases of Haemophilus parainfluenzae, Acinetobacter baumannii, Klebsiella pneumoniae, Pseudomonas aeruginosa, Stenotrophomonas maltophilia, Staphylococcus aureus, and Enterococcus faecalis between the ICU and non-ICU groups (p < 0.05).ConclusionsThis study demonstrated the superiority of mNGS over culture in detecting all kinds of pathogen species in sputum samples. These results indicate that mNGS may serve as a valuable tool to identify pathogens, especially for ICU patients who are more susceptible to mixed infections.
- Published
- 2022
- Full Text
- View/download PDF
4. Effects of short-term heat stress on the activity of three antioxidant enzymes of predatory mite Neoseiulus barkeri (acari, phytoseiidae)
- Author
-
Wei-Zhen Li, Tong Zhu, Jing-Jiang Zhou, and Su-Qin Shang
- Subjects
Neoseiulus barkeri ,short-term heat stress ,protein content ,antioxidant enzyme ,activity ,Physiology ,QP1-981 - Abstract
To study the physiological mechanisms of Neoseiulus barkeri in response to short-term heat stress, the eggs and the emerged adults were exposed to 38, 40, and 42°C, 85% ± 5%RH,16 h:8 h (L:D) for 2, 4, and 6 h. The activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) as well as the protein content of N. barkeri were examined. All treatments caused significant different changes compared to the untreated control. The protein content increased as the temperature increased, while it showed different changing trends with the prolongation of exposure duration. The enzymatic activity of SOD, CAT, and POD was significantly affected by the temperature treatment. Both the maximum and minimum level of the three enzymes after a short-term heat stress differed significantly to the control group (p < 0.05). The highest values of three enzymatic activities were all obtained at 40°C-4 h. Person correlation analysis indicates that the high temperature was the primary factor affecting the enzymatic activity, while the exposure duration of the heat stress was the secondary factor. In general, the short-term heat stress increased the protein content of Neoseiulus barkeri and up-regulated the expression of SOD, CAT, and POD activities as well.
- Published
- 2022
- Full Text
- View/download PDF
5. Responses of Fungi Maggot (Bradysia impatiens Johannsen) to Allyl Isothiocyanate and High CO2
- Author
-
Yu-Ping Gou, Peter Quandahor, Liang Mao, Chun-Chun Li, Jing-Jiang Zhou, and Chang-Zhong Liu
- Subjects
Bradysia impatiens Johannsen ,allyl isothiocyanate ,sub-lethal effects ,high CO2 ,detoxification enzyme activity ,antioxidant enzyme activity ,Physiology ,QP1-981 - Abstract
Botanical pesticide is highly recommended for integrated pest management (IPM), due to its merits such as environmental friendliness, safe to non-target organisms, operators, animals, and food consumers. The experiment was conducted to determine the lethal and sub-lethal effects of allyl isothiocyanate (AITC) on eggs, third instar larvae, pupae, and females and males of Bradysia impatiens Johannsen (B. impatiens). Different concentrations of AITC under ambient CO2 by the conical flask sealed fumigation method were used for the experiment. The results showed that there was a significant linear relationship between different concentrations of AITC and the toxicity regression equation of B. impatiens. The sub-lethal concentrations of AITC had significant effects on the larval stage, pupal stage, pupation rate, pupal weight, adult emergence rate, and oviposition. The pupation rate, pupal weight, and adult emergency rate were significantly (p < 0.05) affected by AITC fumigation. The pupation rate was the lowest after fumigation treatment of AITC at LC50 (36.67%), followed by LC25 (41.94%), compared with the CK (81.39%). Female longevity was significantly (p < 0.05) shortened by fumigation at LC25 (1.75 d) and LC50 (1.64 d), compared with that of CK (2.94 d). Male longevity was shorter at LC25 (1.56 d) than at LC50 (1.25 d) and had no significant difference between these two treatments. The fumigation efficiency of AITC was significantly increased under high CO2 condition. Furthermore, detoxification enzyme activities and antioxidant enzyme activities were accumulated under high CO2 condition. The fumigation method in the application of AITC can be useful in areas where B. impatiens is a major concern.
- Published
- 2022
- Full Text
- View/download PDF
6. Antioxidant Enzymes and Heat-Shock Protein Genes of Green Peach Aphid (Myzus persicae) Under Short-Time Heat Stress
- Author
-
Aroosa Khurshid, Rehan Inayat, Ansa Tamkeen, Inzamam Ul Haq, Chunchun Li, Solomon Boamah, Jing-Jiang Zhou, and Changzhong Liu
- Subjects
green peach aphid ,Myzus persicae ,heat stress ,heat-shock protein ,antioxidant enzymes ,Physiology ,QP1-981 - Abstract
The management of insect pests under fluctuating temperatures has become an interesting area of study due to their ability to stimulate defense mechanisms against heat stress. Therefore, understanding insect’s physiological and molecular response to heat stress is of paramount importance for pest management. Aphids are ectothermic organisms capable of surviving in different climatic conditions. This study aimed to determine the effects of short-time heat stress on green peach aphid Myzus persicae under controlled conditions. In this study, short-time heat stress treatments at different temperatures 27, 30, 33, and 36°C with exposure times of 1, 3, 6, and 10 h, respectively, on the activities of antioxidant enzymes, including superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), and oxidants, such as malondialdehyde (MDA) and hydrogen peroxide (H2O2), were determined. The results showed that the short-time heat stress significantly increased the content of MDA of M. persicae by 71, 78, 81, and 86% at 36°C for the exposure times of 1, 3, 6, and 10 h, respectively, compared with control. The content of H2O2 increased by 75, 80, 85, and 88% at 36°C for the exposure times of 1, 3, 6, and 10 h, respectively, compared with the control. The SOD, POD, and CAT activities increased by 61, 76, and 77% for 1 h, 72, 83, and 84% for 3 h, 80, 85, and 86% for 6 h, and 87, 87.6, and 88% for 10 h at 36°C, respectively, compared with control. Again, under short-time heat stress, the transcription levels of Hsp22, Hsp23, Hsp27, SOD, POD, and CAT genes were upregulated compared with control. Our results suggest that M. persicae increased the enzymatic antioxidant activity and heat-shock gene expression as one of the defensive mechanisms in response to heat stresses.
- Published
- 2021
- Full Text
- View/download PDF
7. Identification of Candidate Carboxylesterases Associated With Odorant Degradation in Holotrichia parallela Antennae Based on Transcriptome Analysis
- Author
-
Jiankun Yi, Shang Wang, Zhun Wang, Xiao Wang, Gongfeng Li, Xinxin Zhang, Yu Pan, Shiwen Zhao, Juhong Zhang, Jing-Jiang Zhou, Jun Wang, and Jinghui Xi
- Subjects
Holotrichia parallela ,antennal transcriptome ,odorant-degrading enzyme ,carboxylesterase ,antenna-biased expression profile ,Physiology ,QP1-981 - Abstract
Insects rely on their olfactory systems in antennae to recognize sex pheromones and plant volatiles in surrounding environments. Some carboxylesterases (CXEs) are odorant-degrading enzymes (ODEs), degrading odorant signals to protect the olfactory neurons against continuous excitation. However, there is no report about CXEs in Holotrichia parallela, one of the most major agricultural underground pests in China. In the present study, 20 candidate CXEs were identified based on transcriptome analysis of female and male antennae. Sequence alignments and phylogenetic analysis were performed to investigate the characterization of these candidate CXEs. The expression profiles of CXEs were compared by RT-qPCR analysis between olfactory and non-olfactory tissues of both genders. HparCXE4, 11, 16, 17, 18, 19, and 20 were antenna-biased expressed genes, suggesting their possible roles as ODEs. HparCXE6, 10, 11, 13, and 16 showed significantly higher expression profiles in male antennae, whereas HparCXE18 was expressed more in female antennae. This study highlighted candidate CXE genes linked to odorant degradation in antennae, and provided a useful resource for further work on the H. parallela olfactory mechanism and selection of target genes for integrative control of H. parallela.
- Published
- 2021
- Full Text
- View/download PDF
8. Long-Term Effect of Elevated CO2 on the Development and Nutrition Contents of the Pea Aphid (Acyrthosiphon pisum)
- Author
-
Chunchun Li, Qian Sun, Yuping Gou, Kexin Zhang, Qiangyan Zhang, Jing-Jiang Zhou, and Changzhong Liu
- Subjects
Acyrthosiphon pisum ,elevated CO2 ,generation ,development ,nutrition ,Physiology ,QP1-981 - Abstract
It is predicted that the current atmospheric CO2 level will be doubled by the end of this century. Here, we investigate the impacts of elevated CO2 (550 and 750 μL/L) on the development and nutrition status of the green pea aphid for six generations, which is longer than previous studies. All seven examined physiological parameters were not affected over six generations under the ambient CO2 level (380 μL/L). However, the elevated CO2 levels (550 and 750 μL/L) prolonged nymph duration, decreased adult longevity, female fecundity and protein content, and increased the contents of total lipid, soluble sugar and glycogen. There was a significant interaction between the effect of CO2 levels and the effect of generations on nymph duration, female fecundity and adult longevity. The elevated CO2 had immediate effects on the female fecundity and the contents of total protein, total lipid and soluble sugar, starting within F0 generation. The adult longevity decreased, and the glycogen content increased from the F1 generation. However, the significant effect on the nymph development was only observed after three generations. Our study indicates that the elevated CO2 levels first influence the reproduction, the nutrition and the energy supply, then initiate aphid emergency responses by shortening lifespan and increasing glucose metabolism, and finally result in the slow development under further persistent elevated CO2 conditions after three generations, possibly leading to population decline under elevated CO2 conditions. Our results will guide further field experiments under climate change conditions to evaluate the effects of elevated CO2 on the development of the pea aphids and other insects, and to predict the population dynamics of the green pea aphid.
- Published
- 2021
- Full Text
- View/download PDF
9. Odorant Receptors and Odorant-Binding Proteins as Insect Pest Control Targets: A Comparative Analysis
- Author
-
Herbert Venthur and Jing-Jiang Zhou
- Subjects
insect olfaction ,modulators ,antagonists ,agonists ,pest management ,odorant binding ,Physiology ,QP1-981 - Abstract
Recently, two alternative targets in insect periphery nerve system have been explored for environmentally-friendly approaches in insect pest management, namely odorant-binding proteins (OBPs) and odorant receptors (ORs). Located in insect antennae, OBPs are thought to be involved in the transport of odorants to ORs for the specific signal transduction of behaviorally active odorants. There is rich information on OBP binding affinity and molecular docking to bioactive compounds as well as ample 3D crystal structures due to feasible production of recombinant proteins. Although these provide excellent opportunities for them to be considered as pest control targets and a tool to design pest control agents, the debates on their binding specificity represent an obstacle. On the other hand, ORs have recently been functionally characterized with increasing evidence for their specificity, sensitivity and functional roles in pest behaviors. However, a major barrier to use ORs for semiochemical discovery is the lack of 3D crystal structures. Thus, OBPs and ORs have not been analyzed comparatively together so far for their feasibility as pest control targets. Here, we summarize the state of OBPs and ORs research in terms of its application in insect pest management. We discuss the suitability of both proteins as pest control targets and their selection toward the discovery of new potent semiochemicals. We argue that both proteins represent promising targets for pest control and can be used to identify new super-ligands likely present in nature and with reduced risk of resistance development than insect pesticides currently used in agriculture. We discuss that with the massive identification of OBPs through RNA-seq and improved binding affinity measurements, these proteins could be reconsidered as suitable targets for semiochemical discovery.
- Published
- 2018
- Full Text
- View/download PDF
10. Sensilla Morphology and Complex Expression Pattern of Odorant Binding Proteins in the Vetch Aphid Megoura viciae (Hemiptera: Aphididae)
- Author
-
Daniele Bruno, Gerarda Grossi, Rosanna Salvia, Andrea Scala, Donatella Farina, Annalisa Grimaldi, Jing-Jiang Zhou, Sabino A. Bufo, Heiko Vogel, Ewald Grosse-Wilde, Bill S. Hansson, and Patrizia Falabella
- Subjects
vetch aphid ,chemoreception ,odorant-binding proteins ,RT-qPCR ,immunolocalization ,behavioral assays ,Physiology ,QP1-981 - Abstract
Chemoreception in insects is mediated by several components interacting at different levels and including odorant-binding proteins (OBPs). Although recent studies demonstrate that the function of OBPs cannot be restricted to an exclusively olfactory role, and that OBPs have been found also in organs generally not related to chemoreception, their feature of binding molecules remains undisputed. Studying the vetch aphid Megoura viciae (Buckton), we used a transcriptomic approach to identify ten OBPs in the antennae and we examined the ultrastructural morphology of sensilla and their distribution on the antennae, legs, mouthparts and cauda of wingless and winged adults by scanning electron microscopy (SEM). Three types of sensilla, trichoid, coeloconic and placoid, differently localized and distributed on antennae, mouthparts, legs and cauda, were described. The expression analysis of the ten OBPs was performed by RT-qPCR in the antennae and other body parts of the wingless adults and at different developmental stages and morphs. Five of the ten OBPs (MvicOBP1, MvicOBP3, MvicOBP6, MvicOBP7, and MvicOBP8), whose antibodies were already available, were selected for experiments of whole-mount immunolocalization on antennae, mouthparts, cornicles and cauda of adult aphids. Most of the ten OBPs were more expressed in antennae than in other body parts; MvicOBP1, MvicOBP3, MvicOBP6, MvicOBP7 were also immunolocalized in the sensilla on the antennae, suggesting a possible involvement of these proteins in chemoreception. MvicOBP6, MvicOBP7, MvicOBP8, MvicOBP9 were highly expressed in the heads and three of them (MvicOBP6, MvicOBP7, MvicOBP8) were immunolocalized in the sensilla on the mouthparts, supporting the hypothesis that also mouthparts may be involved in chemoreception. MvicOBP2, MvicOBP3, MvicOBP5, MvicOBP8 were highly expressed in the cornicles-cauda and two of them (MvicOBP3, MvicOBP8) were immunolocalized in cornicles and in cauda, suggesting a possible new function not related to chemoreception. Moreover, the response of M. viciae to different components of the alarm pheromone was assessed by behavioral assays on wingless adult morph; (-)-α-pinene and (+)-limonene were found to be the components mainly eliciting an alarm response. Taken together, our results represent a road map for subsequent in-depth analyses of the OBPs involved in several physiological functions in M. viciae, including chemoreception.
- Published
- 2018
- Full Text
- View/download PDF
11. C-terminus Methionene Specifically Involved in Binding Corn Odorants to Odorant Binding Protein4 in Macrocentrus cingulum.
- Author
-
Ahmed, Tofael, Zhang, Tiantao, Zhenying Wang, Kanglai He, Shuxiong Bai, Raftos, David Andrew, and Jing-Jiang Zhou
- Subjects
C-terminal binding proteins ,METHIONINE ,MACROCENTRUS ,MUTAGENESIS ,OLFACTORY receptors - Abstract
The soluble carrier proteins, OBPs carry odor components through sensilium lymph to specific receptors within the antennal sensilla to trigger behavioral responses. Herein, McinOBP4 was characterized from the Macrocentrus cingulum, which is the specialist parasitic insect of Ostrinia furnacalis for better understanding of olfactory recognition mechanism of this wasp. The classical odorant binding protein McinOBP4 showed good binding affinity to corn green leaf volatiles. RT-qPCR results showed that the McinOBP4 was primarily expressed in male and female wasp antennae, with transcripts levels differing by sex. Fluorescence assays indicate that, McinOBP4 binds corn green leaf volatiles including terpenoides and aliphatic alcohols as well as aldehydes with good affinity. We have also conducted series of binding assay with first mutant (M1), which lacked the last 8 residues and a second mutant (M2), with Met119 replaced by Leucine (Leu119). In the acidic conditions, affinity N-phenylnaphthylamine (1-NPN) to McinOBP4 and M1 were substantially decreased, but increase in basic condition with no significant differences. The lack of C-terminus showed reduced affinity to terpenoides and aliphatic alcohols as well as aldehydes compounds of corn odorants. The mutant M2 with Met119 showed significant reduction in binding affinity to tested odorants, it indicating that Met119 forming hydrophobic chain with the odorants functional group to binding. This finding provides detailed insight of chemosensory function of McinOBP4 in M. cingulum and help to develop low release agents that attract of this wasp to improve ecologically-friendly pest management strategy. [ABSTRACT FROM AUTHOR]
- Published
- 2017
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.