1. Immunogenic epitope scanning in bacteriolytic enzymes Pal and Cpl-1 and engineering Pal to escape antibody responses.
- Author
-
Harhala MA, Gembara K, Rybicka I, Kaźmierczak ZM, Miernikiewicz P, Majewska JM, Budziar W, Nasulewicz-Goldeman A, Nelson DC, Owczarek B, and Dąbrowska K
- Subjects
- Epitopes, Proteins, Amino Acids, Antibody Formation, Anti-Bacterial Agents pharmacology
- Abstract
Bacteriolytic enzymes are promising antibacterial agents, but they can cause a typical immune response in vivo . In this study, we used a targeted modification method for two antibacterial endolysins, Pal and Cpl-1. We identified the key immunogenic amino acids, and designed and tested new, bacteriolytic variants with altered immunogenicity. One new variant of Pal (257-259 MKS → TFG) demonstrated decreased immunogenicity while a similar mutant (257-259 MKS → TFK) demonstrated increased immunogenicity. A third variant (280-282 DKP → GGA) demonstrated significantly increased antibacterial activity and it was not cross-neutralized by antibodies induced by the wild-type enzyme. We propose this variant as a new engineered endolysin with increased antibacterial activity that is capable of escaping cross-neutralization by antibodies induced by wild-type Pal. We show that efficient antibacterial enzymes that avoid cross-neutralization by IgG can be developed by epitope scanning, in silico design, and substitutions of identified key amino acids with a high rate of success. Importantly, this universal approach can be applied to many proteins beyond endolysins and has the potential for design of numerous biological drugs., Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest., (Copyright © 2023 Harhala, Gembara, Rybicka, Kaźmierczak, Miernikiewicz, Majewska, Budziar, Nasulewicz-Goldeman, Nelson, Owczarek and Dąbrowska.)
- Published
- 2023
- Full Text
- View/download PDF