5 results on '"Nuñez-Peralta, Claudia"'
Search Results
2. Different Approaches to Analyze Muscle Fat Replacement With Dixon MRI in Pompe Disease.
- Author
-
Alonso-Jiménez A, Nuñez-Peralta C, Montesinos P, Alonso-Pérez J, García C, Montiel E, Belmonte I, Pedrosa I, Segovia S, Llauger J, and Díaz-Manera J
- Abstract
Quantitative MRI is an increasingly used method to monitor disease progression in muscular disorders due to its ability to measure changes in muscle fat content (reported as fat fraction) over a short period. Being able to objectively measure such changes is crucial for the development of new treatments in clinical trials. However, the analysis of the images involved continues to be a daunting task because of the time needed. Whether a more specific analysis selecting individual muscles or a global one analyzing the whole thigh or compartments could be a suitable alternative has only been marginally studied. In our study we compare three methods of analysis of 2-point-dixon images in a cohort of 34 patients with late onset Pompe disease followed over a period of one year. We measured fat fraction on MRIs obtained at baseline and at year 1, and we calculated the increment of fat fraction. We correlated the results obtained with the results of muscle function tests to investigate whether the three methods of analysis were equivalent or not. We observed significant differences between the three methods in the estimation of the fat fraction at both baseline and year 1, but no difference was found in the increment in fat fraction between baseline and year 1. When we correlated the fat fraction obtained with each method and the muscle function tests, we found a significant correlation with most tests in all three methods, although in most comparisons the highest correlation coefficient was found with the analysis of individual muscles. We conclude that the fastest strategy of analysis assessing compartments or the whole thigh could be reliable for certain cohorts of patients where the variable to study is the fat increment. In other sorts of studies, an individual muscle approach seems the most reliable technique., Competing Interests: PM is employed by the company Philips Healthcare Iberia. The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest., (Copyright © 2021 Alonso-Jiménez, Nuñez-Peralta, Montesinos, Alonso-Pérez, García, Montiel, Belmonte, Pedrosa, Segovia, Llauger and Díaz-Manera.)
- Published
- 2021
- Full Text
- View/download PDF
3. Platelet Derived Growth Factor-AA Correlates With Muscle Function Tests and Quantitative Muscle Magnetic Resonance in Dystrophinopathies.
- Author
-
Alonso-Jiménez A, Fernández-Simón E, Natera-de Benito D, Ortez C, García C, Montiel E, Belmonte I, Pedrosa I, Segovia S, Piñol-Jurado P, Carrasco-Rozas A, Suárez-Calvet X, Jimenez-Mallebrera C, Nascimento A, Llauger J, Nuñez-Peralta C, Montesinos P, Alonso-Pérez J, Gallardo E, Illa I, and Díaz-Manera J
- Abstract
Introduction: Duchenne (DMD) and Becker (BMD) muscular dystrophy are X-linked muscular disorders produced by mutations in the DMD gene which encodes the protein dystrophin. Both diseases are characterized by progressive involvement of skeletal, cardiac, and respiratory muscles. As new treatment strategies become available, reliable biomarkers and outcome measures that can monitor disease progression are needed for clinical trials. Methods: We collected clinical and functional data and blood samples from 19 DMD patients, 13 BMD patients, and 66 healthy controls (8 pediatric and 58 adult controls), and blood samples from 15 patients with dysferlinopathy (DYSF) and studied the serum concentration of 4 growth factors involved in the process of muscle fibrosis. We correlated the serum concentration of these growth factors with several muscle function tests, spirometry results and fat fraction identified by quantitative Dixon muscle MRI. Results: We found significant differences in the serum concentration of Platelet Derived Growth Factor-AA (PDGF-AA) between DMD patients and pediatric controls, in Connective Tissue Growth Factor (CTGF) between BMD patients and adult controls, and in and Transforming Growth Factor- β1 (TGF-β1) between BMD and DYSF patients. PDGF-AA showed a good correlation with several muscle function tests for both DMD and BMD patients and with thigh fat fraction in BMD patients. Moreover, PDGF-AA levels were increased in muscle biopsies of patients with DMD and BMD as was demonstrated by immunohistochemistry and Real-Time PCR studies. Conclusion: Our study suggests that PDGF-AA should be further investigated in a larger cohort of DMD and BMD patients because it might be a good biomarker candidate to monitor the progression of these diseases., Competing Interests: PM is employed by the company Philips Healthcare Iberia. The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest., (Copyright © 2021 Alonso-Jiménez, Fernández-Simón, Natera-de Benito, Ortez, García, Montiel, Belmonte, Pedrosa, Segovia, Piñol-Jurado, Carrasco-Rozas, Suárez-Calvet, Jimenez-Mallebrera, Nascimento, Llauger, Nuñez-Peralta, Montesinos, Alonso-Pérez, Gallardo, Illa and Díaz-Manera.)
- Published
- 2021
- Full Text
- View/download PDF
4. Magnetization Transfer Ratio in Lower Limbs of Late Onset Pompe Patients Correlates With Intramuscular Fat Fraction and Muscle Function Tests.
- Author
-
Nuñez-Peralta C, Montesinos P, Alonso-Jiménez A, Alonso-Pérez J, Reyes-Leiva D, Sánchez-González J, Llauger-Roselló J, Segovia S, Belmonte I, Pedrosa I, Martínez-Noguera A, Matellini-Mosca B, Walter G, and Díaz-Manera J
- Abstract
Objectives: Magnetization transfer (MT) imaging exploits the interaction between bulk water protons and protons contained in macromolecules to induce signal changes through a special radiofrequency pulse. MT detects muscle damage in patients with neuromuscular conditions, such as limb-girdle muscular dystrophies or Charcot-Marie-Tooth disease, which are characterized by progressive fiber loss and replacement by fatty tissue. In Pompe disease, in which there is, in addition, an accumulation of glycogen inside the muscle fibers, MT has not been tested yet. Our aim is to estimate MT ratio (MTR) in the skeletal muscle of these patients and correlate it with intramuscular fat fraction (FF) and results of muscle function tests. Methods: We obtained two-point axial Dixon and Dixon-MT sequences of the right thigh on a 1.5 Teslas MRI scanner in 60 individuals, including 29 late onset Pompe disease patients, 2 patients with McArdle disease, and 29 age and sex matched healthy controls. FF and MTR were estimated. Muscle function using several muscle function tests, including quantification of muscle strength, timed test quality of life scales, conventional spirometry obtaining forced vital capacity while sitting and in the supine position, were assessed in all patients. Results: MTR was significantly lower in Pompe patients compared with controls (45.5 ± 8.5 vs. 51.7 ± 2.3, Student T -test, p < 0.05). There was a negative correlation between the MTR and FF muscles studied (correlation coefficient: -0.65, Spearman test: p < 0.05). MTR correlated with most of the muscle function test results. We analyzed if there was any difference in MTR values between Pompe patients and healthy controls in those muscles that did not have an increase in fat, a measure that could be related to the presence of glycogen in skeletal muscles, but we did not identify significant differences except in the adductor magnus muscle (48.4 ± 3.6 in Pompe vs. 51 ± 1.3 in healthy controls, Student T -test = 0.023). Conclusions: MTR is a sensitive tool to identify muscle loss in patients with Pompe disease and shows a good correlation with muscle function tests. Therefore, the MT technique can be useful in monitoring muscle degeneration in Pompe disease in clinical trials or natural history studies., Competing Interests: PM was employed by company Philips Healthcare Iberia. The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest., (Copyright © 2021 Nuñez-Peralta, Montesinos, Alonso-Jiménez, Alonso-Pérez, Reyes-Leiva, Sánchez-González, Llauger-Roselló, Segovia, Belmonte, Pedrosa, Martínez-Noguera, Matellini-Mosca, Walter and Díaz-Manera.)
- Published
- 2021
- Full Text
- View/download PDF
5. Correlation Between Respiratory Accessory Muscles and Diaphragm Pillars MRI and Pulmonary Function Test in Late-Onset Pompe Disease Patients.
- Author
-
Reyes-Leiva D, Alonso-Pérez J, Mayos M, Nuñez-Peralta C, Llauger J, Belmonte I, Pedrosa-Hernández I, Segovia S, and Díaz-Manera J
- Abstract
Objectives: Pompe disease is a rare genetic disease produced by mutations in the GAA gene leading to progressive skeletal and respiratory muscle weakness. T1-weighted magnetic resonance imaging is useful to identify fatty replacement in skeletal muscles of late-onset Pompe disease (LOPD) patients. Previous studies have shown that replacement by fat correlates with worse results of muscle function tests. Our aim was to investigate if fat replacement of muscles involved in the ventilation process correlated with results of the spirometry and predicted respiratory muscle impairment in LOPD patients over time. Materials and Methods: We studied a cohort of 36 LOPD patients followed up annually in our center for a period of 4 years. We quantified muscle fat replacement using Mercuri score of the thoracic paraspinal and abdominal muscles and the pillars of the diaphragm. We correlated the combined Mercuri scores of these areas with spirometry results and the need of respiratory support. Results: We found a statistically significant correlation (Spearman test, p < 0.05; coefficient of correlation > 0.6) between forced vital capacity seated and lying and fat fraction score of all muscle groups studied. The group of patients who needed respiratory support had higher fat fraction scores than patients not requiring ventilatory support. Higher fat replacement in these areas correlated with worse progression in spirometry values over time. Conclusions: Fat replacement of paraspinal, abdominal, and trunk muscles correlates with results of spirometry and is able to predict worsening in respiratory muscle function tests that could lead to an emerging ventilatory dysfunction. Therefore, the identification of fat replacement in these muscle groups should lead to a closer monitorization of patients. Radiologic evaluation of diaphragm pillars in T1-weighted imaging axial sequences could also be helpful to predict respiratory insufficiency., Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest., (Copyright © 2021 Reyes-Leiva, Alonso-Pérez, Mayos, Nuñez-Peralta, Llauger, Belmonte, Pedrosa-Hernández, Segovia and Díaz-Manera.)
- Published
- 2021
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.