1. Coherent Presentations of Monoidal Categories
- Author
-
Curien, Pierre-Louis, Mimram, Samuel, Institut de Recherche en Informatique Fondamentale (IRIF (UMR_8243)), Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Design, study and implementation of languages for proofs and programs (PI.R2), Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche en Informatique Fondamentale (IRIF (UMR_8243)), Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Inria de Paris, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Laboratoire d'informatique de l'École polytechnique [Palaiseau] (LIX), Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X), ANR-13-BS02-0005,CATHRE,Catégories, Homotopie et Réécriture(2013), École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS), Inria de Paris, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche en Informatique Fondamentale (IRIF (UMR_8243)), and Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7)
- Subjects
FOS: Computer and information sciences ,Computer Science - Logic in Computer Science ,68Q42 ,Mathematics::Category Theory ,ACM: F.: Theory of Computation/F.4: MATHEMATICAL LOGIC AND FORMAL LANGUAGES/F.4.2: Grammars and Other Rewriting Systems ,FOS: Mathematics ,[INFO.INFO-LO]Computer Science [cs]/Logic in Computer Science [cs.LO] ,Mathematics - Category Theory ,Category Theory (math.CT) ,F.4.2 ,Logic in Computer Science (cs.LO) ,[MATH.MATH-CT]Mathematics [math]/Category Theory [math.CT] - Abstract
International audience; Presentations of categories are a well-known algebraic tool to provide descriptions of categories by means of generators, for objects and morphisms, and relations on morphisms. We generalize here this notion, in order to consider situations where the objects are considered modulo an equivalence relation, which is described by equational generators. When those form a convergent (abstract) rewriting system on objects, there are three very natural constructions that can be used to define the category which is described by the presentation: one consists in turning equational generators into identities (i.e. considering a quotient category), one consists in formally adding inverses to equational generators (i.e. localizing the category), and one consists in restricting to objects which are normal forms. We show that, under suitable coherence conditions on the presentation, the three constructions coincide, thus generalizing celebrated results on presentations of groups, and we extend those conditions to presentations of monoidal categories.
- Published
- 2017
- Full Text
- View/download PDF