1. Probing Dark Energy via Weak Gravitational Lensing with the SuperNova Acceleration Probe (SNAP)
- Author
-
Greg Aldering, M. Hoff, Ralph C. Bohlin, S. L. Mufson, Andrew Szymkowiak, L. Gladney, O. Le Fevre, D. Cole, Nick Mostek, N. Palaio, Susana E. Deustua, Wolfgang Lorenzon, P. Limon, M. L. Lampton, Dragan Huterer, Scott Dodelson, N. Kuznetsova, Alain Mazure, H. Shuka, S. T. Holland, F. Stabenau, Josh Frieman, Roger Smith, Guofeng Wang, T. Davies, B. Besuner, Martin White, A. Weinstein, Roger F. Malina, Jason Rhodes, J. Annis, R. Lafever, G. Kushner, J. Albert, H. Lin, Saul Perlmutter, Lars Bergström, G. Smadja, R. Pain, Eric V. Linder, B. Krieger, John Peoples, A. D. Tomasch, B. Bigelow, J. Musser, Peter Nugent, A. Refregier, William W. Craig, L. Marian, H. von der Lippe, Michael Seiffert, D. E. Groom, Keith Taylor, Timothy A. McKay, Eric Prieto, Chris Bebek, C. R. Bower, D. Peterson, Albert Stebbins, G. Tarle, Stephen Bailey, J. I. Lamoureux, Christopher Stoughton, J.-P. Walder, F. DeJongh, Alex G. Kim, W. Emmet, Eugene D. Commins, V. Scarpine, M. Frerking, Gary Bernstein, A. Goobar, Douglas L. Tucker, Michael Schubnell, C. T. Day, Andre Tilquin, D. Figer, Shawn McKee, Edvard Mörtsell, Rahman Amanullah, M. Deharveng, Dominique Fouchez, W. C. Wester, D. Rabinowitz, M.E. Huffer, R. Nakajima, J. Snyder, T. Dobson, Armin Karcher, Stéphane Basa, Michael L. Brown, David H. Pankow, Steven E. Kahn, Anne Ealet, C. Juramy, Steve Kent, A. S. Fruchter, S. C. Loken, G. Goldhaber, Bhuvnesh Jain, Alain Bonissent, M. Aumeunier, Philip J. Marshall, J. P. Marriner, M. E. Levi, E. Barrelet, P. Jelinsky, Michael Sholl, A. L. Spadafora, L. Hui, T. Diehl, B. Mcginnis, Richard Ellis, B. Mobqsher, V. Lebrun, S. Allam, William Carithers, George F. Smoot, Richard Massey, Roger Blandford, Pierre Astier, W. Althouse, William F. Kolbe, D. W. Gerdes, D. Rusin, Natalie A. Roe, Ramon Miquel, N. Morgan, H. Heetderks, Manfred Bester, D. Vincent, M. Campbell, C. Baltay, Hakeem M. Oluseyi, Flores, Sylvie, Centre de Physique des Particules de Marseille (CPPM), Aix Marseille Université (AMU)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Institut de Physique Nucléaire de Lyon (IPNL), Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), SNAP, Université Claude Bernard Lyon 1 (UCBL), and Université de Lyon-Université de Lyon-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Point spread function ,FOS: Physical sciences ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,[SDU.ASTR] Sciences of the Universe [physics]/Astrophysics [astro-ph] ,01 natural sciences ,law.invention ,Telescope ,[PHYS.ASTR.CO]Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO] ,law ,0103 physical sciences ,010306 general physics ,Weak gravitational lensing ,Physics ,[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph] ,010308 nuclear & particles physics ,Astrophysics (astro-ph) ,Astrophysics::Instrumentation and Methods for Astrophysics ,Astronomy ,Redshift ,Galaxy ,Supernova ,[PHYS.ASTR.CO] Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO] ,Dark energy ,Joint Dark Energy Mission - Abstract
SNAP is a candidate for the Joint Dark Energy Mission (JDEM) that seeks to place constraints on the dark energy using two distinct methods. The first, Type Ia SN, is discussed in a companion white paper. The second method is weak gravitational lensing, which relies on the coherent distortions in the shapes of background galaxies by foreground mass structures. The excellent spatial resolution and photometric accuracy afforded by a 2-meter space-based observatory are crucial for achieving the high surface density of resolved galaxies, the tight control of systematic errors in the telescope's Point Spread Function (PSF), and the exquisite redshift accuracy and depth required by this project. These are achieved by the elimination of atmospheric distortion and much of the thermal and gravity loads on the telescope. The SN and WL methods for probing dark energy are highly complementary and the error contours from the two methods are largely orthogonal., 17 pages, 6 figures; White paper to the Dark Energy Task Force
- Published
- 2005