1. Biocompatibility of nanostructured boron doped diamond for the attachment and proliferation of human neural stem cells
- Author
-
Clément Hébert, A. C. Taylor, Robert Edgington, Barbora Vagaska, Philippe Bergonzo, Patrizia Ferretti, Richard B. Jackman, London Centre for Nanotechnology, University College of London [London] (UCL), Cardiac Unit, Institute of Child Health (UCL), Laboratoire Capteurs Diamant (LCD-LIST), Département Métrologie Instrumentation & Information (DM2I), Laboratoire d'Intégration des Systèmes et des Technologies (LIST), Direction de Recherche Technologique (CEA) (DRT (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Technologique (CEA) (DRT (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Laboratoire d'Intégration des Systèmes et des Technologies (LIST), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, European Project: 280433,EC:FP7:NMP,FP7-NMP-2011-SMALL-5,NEUROCARE(2012), Laboratoire d'Intégration des Systèmes et des Technologies (LIST (CEA)), and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Laboratoire d'Intégration des Systèmes et des Technologies (LIST (CEA))
- Subjects
NANOCRYSTALLINE DIAMOND ,Cell Culture Techniques ,Biocompatible Materials ,02 engineering and technology ,01 natural sciences ,law.invention ,DOPAMINE ,Neural Stem Cells ,law ,FILM ELECTRODES ,education.field_of_study ,021001 nanoscience & nanotechnology ,DIFFERENTIATION ,0210 nano-technology ,inorganic chemicals ,Materials science ,Biocompatibility ,Population ,Biomedical Engineering ,CULTURES ,chemistry.chemical_element ,Nanotechnology ,MICROELECTRODE ARRAYS ,Carbon nanotube ,engineering.material ,010402 general chemistry ,Cellular and Molecular Neuroscience ,biocompatibility ,THIN-FILMS ,diamond ,stem cells ,Humans ,[CHIM.COOR]Chemical Sciences/Coordination chemistry ,[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,education ,Boron ,[SDV.IB.BIO]Life Sciences [q-bio]/Bioengineering/Biomaterials ,Embryonic Stem Cells ,Cell Proliferation ,Dopant ,STABILITY ,Doping ,Diamond ,0104 chemical sciences ,Nanostructures ,chemistry ,DNA SENSORS ,engineering ,IMPLANTATION ,Electrochemical window - Abstract
International audience; Objective. We quantitatively investigate the biocompatibility of chemical vapour deposited (CVD) nanocrystalline diamond (NCD) after the inclusion of boron, with and without nanostructuring. The nanostructuring method involves a novel approach of growing NCD over carbon nanotubes (CNTs) that act as a 3D scaffold. This nanostructuring of BNCD leads to a material with increased capacitance, and this along with wide electrochemical window makes BNCD an ideal material for neural interface applications, and thus it is essential that their biocompatibility is investigated. Approach. Biocompatibility was assessed by observing the interaction of human neural stem cells (hNSCs) with a variety of NCD substrates including undoped ones, and NCD doped with boron, which are both planar, and nanostructured. hNSCs were chosen due to their sensitivity, and various methods including cell population and confluency were used to quantify biocompatibility. Main results. Boron inclusion into NCD film was shown to have no observable effect on hNSC attachment, proliferation and viability. Furthermore, the biocompatibility of nanostructured boron-doped NCD is increased upon nanostructuring, potentially due to the increased surface area. Significance. Diamond is an attractive material for supporting the attachment and development of cells as it can show exceptional biocompatibility. When boron is used as a dopant within diamond it becomes a p-type semiconductor, and at high concentrations the diamond becomes quasi-metallic, offering the prospect of a direct electrical device-cell interfacing system.
- Published
- 2015
- Full Text
- View/download PDF