1. Redox Controls during Magma Ocean Degassing
- Author
-
Fabien Bernadou, Mathieu Roskosz, Yves Marrocchi, Giada Iacono-Marziano, Mohamed Ali Bouhifd, Bruno Scaillet, Manuel A. Moreira, Grégory Rogerie, Fabrice Gaillard, Institut des Sciences de la Terre d'Orléans - UMR7327 (ISTO), Bureau de Recherches Géologiques et Minières (BRGM) (BRGM)-Observatoire des Sciences de l'Univers en région Centre (OSUC), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS), Magma - UMR7327, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Bureau de Recherches Géologiques et Minières (BRGM) (BRGM)-Observatoire des Sciences de l'Univers en région Centre (OSUC), Institut de minéralogie, de physique des matériaux et de cosmochimie (IMPMC), Muséum national d'Histoire naturelle (MNHN)-Institut de recherche pour le développement [IRD] : UR206-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Magmas et Volcans (LMV), Institut national des sciences de l'Univers (INSU - CNRS)-Institut de Recherche pour le Développement et la société-Centre National de la Recherche Scientifique (CNRS)-Université Clermont Auvergne (UCA)-Observatoire de Physique du Globe de Clermont-Ferrand (OPGC), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Clermont Auvergne (UCA)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Clermont Auvergne (UCA), Centre de Recherches Pétrographiques et Géochimiques (CRPG), Institut national des sciences de l'Univers (INSU - CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), ANR-18-CE31-0021,GASTON,Les constituants volatils dans les processus magmatiques du noyau aux atmosphères(2018), and ANR-10-LABX-0100,VOLTAIRE,Geofluids and Volatil elements – Earth, Atmosphere, Interfaces – Resources and Environment(2010)
- Subjects
010504 meteorology & atmospheric sciences ,010502 geochemistry & geophysics ,01 natural sciences ,Mantle (geology) ,Astrobiology ,Atmosphere ,[SDU.STU.PL]Sciences of the Universe [physics]/Earth Sciences/Planetology ,Geochemistry and Petrology ,Lithosphere ,Earth and Planetary Sciences (miscellaneous) ,Volatiles ,0105 earth and related environmental sciences ,Crust ,magma ocean ,Outgassing ,Geophysics ,volatiles ,13. Climate action ,Space and Planetary Science ,[SDU]Sciences of the Universe [physics] ,redox ,Magma ,atmosphere ,Terrestrial planet ,Geology ,mantle - Abstract
International audience; Nitrogen, carbon, hydrogen and sulfur are essential elements for life and comprise about 1 % of terrestrial planet masses. These elements dominate planetary surfaces due to their volatile nature, but the Earth's interior also constitutes a major C-H-N-S reservoir. Resolving the origin of the surficial versus deep volatile reservoirs requires the past 4.5 Giga-years of mantle outgassing and ingassing processes to be reconstructed, involving many unknowns. As an alternative, we propose to define the primordial distribution of volatiles resulting from degassing of the Earth's magma ocean (MO). The equilibrium partitioning of C-H-ON -S elements between the MO and its atmosphere is calculated by means of solubility laws, extrapolated to high temperatures and over a large range of redox conditions. Depending on the redox conditions, the amount of volatiles, and the size of the MO considered, we show that the last MO episode may have degassed 40-220 bar atmospheres, whereas hundreds to thousands of ppm of C-H-ON -S can be retained in the magma. Two contrasting scenarios are investigated: reduced vs. oxidized MO. For reduced cases (IW+2) would be dry and C-N-S-rich. An intermediate redox state produces a C-N atmosphere. In many cases, the present-day surficial abundances (atmosphere+ocean+crust) of C and N, the most volatile elements, are very close to the calculated primordial MO-atmosphere distribution. This probably means that lithospheric recycling and post-magma ocean degassing only moderately alter the surficial abundances of these elements. Sulfur, in contrast, must have been mostly outgassed by post-MO events. Changes in redox conditions during magma ocean degassing played a first order role in the composition of the primordial atmosphere of planets. We suggest that the more oxidized conditions on Venus due to H-loss may have played a role in the growth of a dry MO atmosphere on this planet compared to an H-bearing one on Earth. To verify these first order assertions, constraints on volatile behaviour under extreme magma ocean conditions and upon magma ocean solidification are urgently needed.
- Published
- 2022