1. Towards Limiting Semantic Data Loss In 4D Urban Data Semantic Graph Generation
- Author
-
Sylvie Servigne, Gilles Gesquière, Diego Vinasco-Alvarez, John Samuel, Origami (Origami), Laboratoire d'InfoRmatique en Image et Systèmes d'information (LIRIS), Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-École Centrale de Lyon (ECL), Université de Lyon-Université Lumière - Lyon 2 (UL2)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Université Lumière - Lyon 2 (UL2), and Base de Données (BD)
- Subjects
Data Integration ,Technology ,Geospatial analysis ,Computer science ,[INFO.INFO-DS]Computer Science [cs]/Data Structures and Algorithms [cs.DS] ,CityGML ,Ontology (information science) ,Semantic data model ,computer.software_genre ,Networks of Ontologies ,11. Sustainability ,Applied optics. Photonics ,[INFO]Computer Science [cs] ,Semantic Web ,3D Urban Data ,Information retrieval ,Data Transformation ,GeoSPARQL ,Engineering (General). Civil engineering (General) ,[INFO.INFO-MO]Computer Science [cs]/Modeling and Simulation ,TA1501-1820 ,Data model ,TA1-2040 ,Spatio-temporal Data ,computer ,Graphs ,Data integration - Abstract
To enrich urban digital twins and better understand city evolution, the integration of heterogeneous, spatio-temporal data has become a large area of research in the enrichment of 3D and 4D (3D + Time) semantic city models. These models, which can represent the 3D geospatial data of a city and their evolving semantic relations, may require data-driven integration approaches to provide temporal and concurrent views of the urban landscape. However, data integration often requires the transformation or conversion of data into a single shared data format, which can be prone to semantic data loss. To combat this, this paper proposes a model-centric ontology-based data integration approach towards limiting semantic data loss in 4D semantic urban data transformations to semantic graph formats. By integrating the underlying conceptual models of urban data standards, a unified spatio-temporal data model can be created as a network of ontologies. Transformation tools can use this model to map datasets to interoperable semantic graph formats of 4D city models. This paper will firstly illustrate how this approach facilitates the integration of rich 3D geospatial, spatio-temporal urban data and semantic web standards with a focus on limiting semantic data loss. Secondly, this paper will demonstrate how semantic graphs based on these models can be implemented for spatial and temporal queries toward 4D semantic city model enrichment.
- Published
- 2021
- Full Text
- View/download PDF