1. International comparisons of laboratory values from the 4CE collaborative to predict COVID-19 mortality
- Author
-
Weber, Griffin, Hong, Chuan, Xia, Zongqi, Palmer, Nathan, Avillach, Paul, L’yi, Sehi, Keller, Mark, Murphy, Shawn, Gutiérrez-Sacristán, Alba, Bonzel, Clara-Lea, Serret-Larmande, Arnaud, Neuraz, Antoine, Omenn, Gilbert, Visweswaran, Shyam, Klann, Jeffrey, South, Andrew, Loh, Ne Hooi Will, Cannataro, Mario, Beaulieu-Jones, Brett, Bellazzi, Riccardo, Agapito, Giuseppe, Alessiani, Mario, Aronow, Bruce, Bell, Douglas, Benoit, Vincent, Bourgeois, Florence, Chiovato, Luca, Cho, Kelly, Dagliati, Arianna, Duvall, Scott, Barrio, Noelia García, Hanauer, David, Ho, Yuk-Lam, Holmes, John, Issitt, Richard, Liu, Molei, Luo, Yuan, Lynch, Kristine, Maidlow, Sarah, Malovini, Alberto, Mandl, Kenneth, Mao, Chengsheng, Matheny, Michael, Moore, Jason, Morris, Jeffrey, Morris, Michele, Mowery, Danielle, Ngiam, Kee Yuan, Patel, Lav, Pedrera Jiménez, Miguel, Ramoni, Rachel, Schriver, Emily, Schubert, Petra, Balazote, Pablo Serrano, Spiridou, Anastasia, Tan, Amelia, Tan, Byorn, Tibollo, Valentina, Torti, Carlo, Trecarichi, Enrico, Wang, Xuan, Aaron, James, Albayrak, Adem, Albi, Giuseppe, Balshi, James, Alloni, Anna, Amendola, Danilo, Angoulvant, François, Anthony, Li, Ashraf, Fatima, Atz, Andrew, Azevedo, Paula, Bellasi, Antonio, Beraghi, Michele, Bernal-Sobrino, José Luis, Bernaux, Mélodie, Bey, Romain, Bhatnagar, Surbhi, Blanco-Martínez, Alvar, Boeker, Martin, Booth, John, Bosari, Silvano, Bradford, Robert, Brat, Gabriel, Bréant, Stéphane, Brown, Nicholas, Bruno, Raffaele, Bryant, William, Bucalo, Mauro, Bucholz, Emily, Burgun, Anita, Cai, Tianxi, Carmona, Aldo, Caucheteux, Charlotte, Champ, Julien, Chen, Krista, Chen, Jin, Chiudinelli, Lorenzo, Cimino, James, Colicchio, Tiago, Cormont, Sylvie, Cossin, Sébastien, Craig, Jean, Cruz-Bermúdez, Juan Luis, Cruz-Rojo, Jaime, Daniar, Mohamad, Daniel, Christel, Das, Priyam, Devkota, Batsal, Garmire, Lana, Dionne, Audrey, Duan, Rui, Dubiel, Julien, Esteve, Loic, Estiri, Hossein, Fan, Shirley, Follett, Robert, Ganslandt, Thomas, García-Barrio, Noelia, Gehlenborg, Nils, Getzen, Emily, Geva, Alon, Gradinger, Tobias, Gramfort, Alexandre, Griffier, Romain, Griffon, Nicolas, Grisel, Olivier, Han, Larry, Haverkamp, Christian, Key, Daniel, Hazard, Derek, He, Bing, Henderson, Darren, Hilka, Martin, Huling, Kenneth, Hutch, Meghan, Jannot, Anne Sophie, Jouhet, Vianney, Kavuluru, Ramakanth, Kennedy, Chris, Kernan, Kate, Kirchoff, Katie, Kohane, Isaac, Krantz, Ian, Kraska, Detlef, Krishnamurthy, Ashok, Le, Trang, Leblanc, Judith, Lemaitre, Guillaume, Lenert, Leslie, Leprovost, Damien, Long, Qi, Lozano-Zahonero, Sara, Mahmood, Sadiqa, Makoudjou, Adeline, Maram, Anupama, Martel, Patricia, Martins, Marcelo, Marwaha, Jayson, Masino, Aaron, Mazzitelli, Maria, Mensch, Arthur, Milano, Marianna, Minicucci, Marcos, Moal, Bertrand, Ahooyi, Taha Mohseni, Moraleda, Cinta, Moshal, Karyn, Mousavi, Sajad, Murad, Douglas, Naughton, Thomas, Neto, Carlos Tadeu Breda, Newburger, Jane, Njoroge, Wanjiku, Norman, James, Obeid, Jihad, Okoshi, Marina, Olson, Karen, Orlova, Nina, Ostasiewski, Brian, Paris, Nicolas, Pedrera-Jiménez, Miguel, Pfaff, Ashley, Pfaff, Emily, Pillion, Danielle, Pizzimenti, Sara, Prokosch, Hans, Prudente, Robson, Prunotto, Andrea, Quirós-González, Víctor, Raskin, Maryna, Rieg, Siegbert, Roig-Domínguez, Gustavo, Rojo, Pablo, Rubio-Mayo, Paula, Sacchi, Paolo, Sáez, Carlos, Salamanca, Elisa, Samayamuthu, Malarkodi Jebathilagam, Sanchez-Pinto, L. Nelson, Sandrin, Arnaud, Santhanam, Nandhini, Santos, Janaina, Sanz Vidorreta, Fernando, Savino, Maria, Schuettler, Juergen, Scudeller, Luigia, Sebire, Neil, Serrano-Balazote, Pablo, Serre, Patricia, Shah, Mohsin, Abad, Zahra Shakeri Hossein, Silvio, Domenick, Sliz, Piotr, Son, Jiyeon, Sonday, Charles, Sperotto, Francesca, Strasser, Zachary, Tan, Bryce, Tanni, Suzana, Taylor, Deanne, Terriza-Torres, Ana, Tippmann, Patric, Toh, Emma, Tseng, Yi-Ju, Vallejos, Andrew, Varoquaux, Gael, Vella, Margaret, Verdy, Guillaume, Vie, Jill-Jênn, Vitacca, Michele, Wagholikar, Kavishwar, Waitman, Lemuel, Wassermann, Demian, Wolkewitz, Martin, Wong, Scott, Xiong, Xin, Ye, Ye, Yehya, Nadir, Yuan, William, Zambelli, Alberto, Zhang, Harrison, Zöller, Daniela, Zuccaro, Valentina, Zucco, Chiara, Harvard Medical School [Boston] (HMS), University of Pittsburgh (PITT), Pennsylvania Commonwealth System of Higher Education (PCSHE), Massachusetts General Hospital [Boston], Centre de Recherche des Cordeliers (CRC (UMR_S_1138 / U1138)), École Pratique des Hautes Études (EPHE), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Sorbonne Université (SU)-Université Paris Cité (UPCité), Service d'informatique médicale et biostatistiques [CHU Necker], Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-CHU Necker - Enfants Malades [AP-HP], Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP), Université Paris Cité (UPCité), Health data- and model- driven Knowledge Acquisition (HeKA), Inria de Paris, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre de Recherche des Cordeliers (CRC (UMR_S_1138 / U1138)), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Sorbonne Université (SU)-Université Paris Cité (UPCité)-École Pratique des Hautes Études (EPHE), University of Michigan [Ann Arbor], University of Michigan System, Wake Forest School of Medicine [Winston-Salem], Wake Forest Baptist Medical Center, National University Health System [Singapore] (NUHS), Università degli Studi 'Magna Graecia' di Catanzaro = University of Catanzaro (UMG), Università degli Studi di Pavia = University of Pavia (UNIPV), Istituti Clinici Scientifici Maugeri [Pavia] (IRCCS Pavia - ICS Maugeri), ASST Pavia, University of Cincinnati (UC), University of California [Los Angeles] (UCLA), University of California (UC), VA Boston Healthcare System, Hospital Universitario 12 de Octubre [Madrid], University of Pennsylvania, Great Ormond Street Hospital for Children [London] (GOSH), Harvard School of Public Health, Northwestern University [Chicago, Ill. USA], VA Salt Lake City Health Care System, Boston Children's Hospital, University of Kansas [Kansas City], and National University Hospital [Singapore] (NUH)
- Subjects
Health Information Management ,Medicine (miscellaneous) ,Health Informatics ,[SDV.SPEE]Life Sciences [q-bio]/Santé publique et épidémiologie ,Computer Science Applications - Abstract
Given the growing number of prediction algorithms developed to predict COVID-19 mortality, we evaluated the transportability of a mortality prediction algorithm using a multi-national network of healthcare systems. We predicted COVID-19 mortality using baseline commonly measured laboratory values and standard demographic and clinical covariates across healthcare systems, countries, and continents. Specifically, we trained a Cox regression model with nine measured laboratory test values, standard demographics at admission, and comorbidity burden pre-admission. These models were compared at site, country, and continent level. Of the 39,969 hospitalized patients with COVID-19 (68.6% male), 5717 (14.3%) died. In the Cox model, age, albumin, AST, creatine, CRP, and white blood cell count are most predictive of mortality. The baseline covariates are more predictive of mortality during the early days of COVID-19 hospitalization. Models trained at healthcare systems with larger cohort size largely retain good transportability performance when porting to different sites. The combination of routine laboratory test values at admission along with basic demographic features can predict mortality in patients hospitalized with COVID-19. Importantly, this potentially deployable model differs from prior work by demonstrating not only consistent performance but also reliable transportability across healthcare systems in the US and Europe, highlighting the generalizability of this model and the overall approach.
- Published
- 2022
- Full Text
- View/download PDF