1. Optimum functionalization of Si nanowire FET for electrical detection of DNA hybridization
- Author
-
R. Midahuen, B. Previtali, C. Fontelaye, G. Nonglaton, V. Stambouli, S. Barraud, Commissariat à l'énergie atomique et aux énergies alternatives - Laboratoire d'Electronique et de Technologie de l'Information (CEA-LETI), Direction de Recherche Technologique (CEA) (DRT (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Laboratoire des matériaux et du génie physique (LMGP ), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA), ANR-11-LABX-0003,ARCANE,Grenoble, une chimie bio-motivée(2011), and ANR-17-EURE-0003,CBH-EUR-GS,CBH-EUR-GS(2017)
- Subjects
[PHYS]Physics [physics] ,Biosensing ,DNA ,silicon nanowire ,Electrical and Electronic Engineering ,ISFET ,Electronic, Optical and Magnetic Materials ,Biotechnology - Abstract
International audience; In this work, we demonstrate a wafer-scale fabrication of biologically sensitive Si nanowire FET for pH sensing and electrical detection of deoxyribonucleic acid (DNA) hybridization. Based on conventional "top-down" CMOS compatible technology, our bioFETs explore a wide range of design (nanowires (NW), nanoribbons (NR), and honeycomb (HC) structures) with opening access scaled down to only 120 nm. After device fabrication, I DS-V BG transfer and I DS-V DS output characteristics show a conventional n-type FET behavior with an I ON /I OFF value higher than 10 5 , as well as an increase of threshold voltage as the NW width is reduced. Then, using a capacitive coupling in our dually-gated Si bioFETs, the pH sensitivity is enhanced with a pH response up to 600 mV/pH. Finally, we successfully detected an increase of threshold voltage of n-type silicon nanowires (SiNWs) due to hybridized target DNA molecules.
- Published
- 2022