14 results on '"Guillou, Armelle"'
Search Results
2. Robust nonparametric estimation of the conditional tail dependence coefficient
- Author
-
Guillou, Armelle and Guillou, Armelle
- Subjects
[MATH.MATH-ST] Mathematics [math]/Statistics [math.ST] - Published
- 2019
3. Inference for asymptotically independence samples of extremes
- Author
-
Guillou, Armelle and Guillou, Armelle
- Subjects
[MATH.MATH-ST] Mathematics [math]/Statistics [math.ST] - Published
- 2018
4. Risk measure estimation for β-mixing time series and applications
- Author
-
Guillou, Armelle and Guillou, Armelle
- Subjects
[MATH.MATH-ST] Mathematics [math]/Statistics [math.ST] - Published
- 2017
5. Local estimation of the conditional stable tail dependence function
- Author
-
Guillou, Armelle and Guillou, Armelle
- Subjects
[MATH.MATH-ST] Mathematics [math]/Statistics [math.ST] - Published
- 2017
6. Local robust estimation of the Pickands dependence function
- Author
-
Guillou, Armelle and Guillou, Armelle
- Subjects
[MATH.MATH-ST] Mathematics [math]/Statistics [math.ST] - Published
- 2016
7. Estimation of the marginal expected shortfall
- Author
-
Guillou, Armelle and Guillou, Armelle
- Subjects
[MATH.MATH-ST] Mathematics [math]/Statistics [math.ST] - Published
- 2016
8. Extreme Value Theory and Statistics of Univariate Extremes: A Review
- Author
-
Gomes, Maria Ivette, Guillou, Armelle, Centro de Investigação Operacional - Departamento de Estatística e Investigação Operacional (CIO - DEIO), Universidade de Lisboa (ULISBOA), Institut de Recherche Mathématique Avancée (IRMA), and Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[MATH.MATH-ST]Mathematics [math]/Statistics [math.ST] - Abstract
International audience; Statistical issues arising in modelling univariate extremes of a random sample have been successfully used in the most diverse fields, such as biometrics, finance, insurance and risk theory. Statistics of univariate extremes (SUE), the subject to be dealt with in this review paper, has recently faced a huge development, partially because rare events can have catastrophic consequences for human activities, through their impact on the natural and constructed environments. In the last decades, there has been a shift from the area of parametric SUE, based on probabilistic asymptotic results in extreme value theory, towards semi-parametric approaches. After a brief reference to Gumbel's block methodology and more recent improvements in the parametric framework, we present an overview of the developments on the estimation of parameters of extreme events and on the testing of extreme value conditions under a semi-parametric framework. We further discuss a few challenging topics in the area of SUE. univariate extremes; parametric and semi-parametric approaches; extreme value index and tail parameters; testing issues.
- Published
- 2015
- Full Text
- View/download PDF
9. Improving probability-weighted moment methods for the generalized extreme value distribution
- Author
-
Diebolt, Jean, Guillou, Armelle, Naveau, P., Ribereau, P., Laboratoire d'Analyse et de Mathématiques Appliquées (LAMA), Université Paris-Est Marne-la-Vallée (UPEM)-Fédération de Recherche Bézout-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS), Institut de Recherche Mathématique Avancée (IRMA), Université Louis Pasteur - Strasbourg I-Centre National de la Recherche Scientifique (CNRS), Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] (LSCE), Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Centre National de la Recherche Scientifique (CNRS), Institut de Mathématiques et de Modélisation de Montpellier (I3M), Centre National de la Recherche Scientifique (CNRS)-Université Montpellier 2 - Sciences et Techniques (UM2)-Université de Montpellier (UM), Guillou, Armelle, Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Extrèmes : Statistiques, Impacts et Régionalisation (ESTIMR), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Université Montpellier 2 - Sciences et Techniques (UM2)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Fédération de Recherche Bézout-Université Paris-Est Marne-la-Vallée (UPEM), Centre National de la Recherche Scientifique (CNRS)-Université Louis Pasteur - Strasbourg I, Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), and Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)
- Subjects
[MATH.MATH-ST]Mathematics [math]/Statistics [math.ST] ,[MATH.MATH-ST] Mathematics [math]/Statistics [math.ST] ,ComputingMilieux_MISCELLANEOUS - Abstract
In 1985 Hosking et al. estimated with the so-called Probability-Weighted Moments (PWM) method the parameters of the Generalized Extreme Value (GEV) distribution, the latter being classically fitted to maxima of sequences of independent and identically distributed random variables. Their approach is still very popular in hydrology and climatology because of its conceptual simplicity, its easy implementation and its good performance for most distributions encountered in geosciences. Its main drawback resides in its limitations when applied to strong heavy-tailed densities. Whenever the GEV shape parameter is larger than 0.5, the asymptotic properties of the PWMs cannot be derived and consequently, asymptotic confidence intervals cannot be obtained. To broaden the validity domain of the PWM approach, we take advantage of a recent extension of PWM to a larger class of moments, called Generalized PWM (GPWM). This allows us to derive the asymptotic properties of our estimators for larger values of the shape parameter. The performance of our approach is illustrated by studying simulations of small, medium and large GEV samples. Comparisons with other GEV estimation techniques used in hydrology and climatology are performed., REVSTAT-Statistical Journal, Vol. 6 No. 1 (2008): REVSTAT-Statistical Journal
- Published
- 2008
10. An extreme value theory approach for the early detection of time clusters. A simulation-based assessment and an illustration to the surveillance of Salmonella
- Author
-
Guillou, Armelle, Kratz, Marie, Le Strat, Yann, Institut de Recherche Mathématique Avancée (IRMA), Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS), Mathématiques Appliquées Paris 5 (MAP5 - UMR 8145), Université Paris Descartes - Paris 5 (UPD5)-Institut National des Sciences Mathématiques et de leurs Interactions (INSMI)-Centre National de la Recherche Scientifique (CNRS), Institut de Veille Sanitaire (INVS), Institut de Recherche Mathématique Avancée ( IRMA ), Université de Strasbourg ( UNISTRA ) -Centre National de la Recherche Scientifique ( CNRS ), Mathématiques Appliquées à Paris 5 ( MAP5 - UMR 8145 ), Université Paris Descartes - Paris 5 ( UPD5 ) -Institut National des Sciences Mathématiques et de leurs Interactions-Centre National de la Recherche Scientifique ( CNRS ), and Institut de Veille Sanitaire ( INVS )
- Subjects
extreme value theory ,Salmonella ,[MATH.MATH-ST]Mathematics [math]/Statistics [math.ST] ,surveillance ,outbreak detection ,[ MATH.MATH-ST ] Mathematics [math]/Statistics [math.ST] ,return level ,return period - Abstract
International audience; We propose a new method that could be part of a warning system for the early detection of time clusters applied to public health surveillance data. This method is based on the extreme value theory (EVT). To any new count of a particular infection reported to a surveillance system, we associate a return period that corresponds to the time that we expect to be able to see again such a level. If such a level is reached, an alarm is generated. Although standard EVT is only defined in the context of continuous observations, our approach allows to handle the case of discrete observations occurring in the public health surveillance framework. Moreover, it applies without any assumption on the underlying unknown distribution function. The performance of our method is assessed on an extensive simulation study and is illustrated on real data from Salmonella surveillance in France.
- Published
- 2014
- Full Text
- View/download PDF
11. Particle filtering for Gumbel-distributed daily maxima of methane and nitrous oxyde
- Author
-
Toulemonde, Gwladys, Guillou, Armelle, Naveau, Philippe, Institut de Mathématiques et de Modélisation de Montpellier (I3M), Université Montpellier 2 - Sciences et Techniques (UM2)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Institut de Recherche Mathématique Avancée (IRMA), Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS), Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] (LSCE), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Extrèmes : Statistiques, Impacts et Régionalisation (ESTIMR), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Université Montpellier 2 - Sciences et Techniques (UM2)-Université de Montpellier (UM), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), and Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)
- Subjects
[SDU.OCEAN]Sciences of the Universe [physics]/Ocean, Atmosphere ,ComputingMilieux_MISCELLANEOUS - Abstract
International audience
- Published
- 2013
- Full Text
- View/download PDF
12. Network design for heavy rainfall analysis
- Author
-
RIETSCH, Théo, NAVEAU, P., GILARDI, N., GUILLOU, Armelle, Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] (LSCE), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Institut de Recherche Mathématique Avancée (IRMA), Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS), Extrèmes : Statistiques, Impacts et Régionalisation (ESTIMR), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), ANR-09-RISK-0007,MOPERA,MOdélisation Probabiliste pour l'Evaluation du Risque Avalanche(2009), European Project: 212250,EC:FP7:ENV,FP7-ENV-2007-1,ACQWA(2008), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), and Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)
- Subjects
[SDU.OCEAN]Sciences of the Universe [physics]/Ocean, Atmosphere ,[SDU.STU.CL]Sciences of the Universe [physics]/Earth Sciences/Climatology ,[SDU.STU.ME]Sciences of the Universe [physics]/Earth Sciences/Meteorology - Abstract
International audience; The analysis of heavy rainfall distributional properties is a complex object of study in hydrology and climatology, and it is essential for impact studies. In this paper, we investigate the question of how to optimize the spatial design of a network of existing weather stations. Our main criterion for such an inquiry is the capability of the network to capture the statistical properties of heavy rainfall described by the Extreme Value Theory. We combine this theory with a machine learning algorithm based on neural networks and a Query By Committee approach. Our resulting algorithm is tested on simulated data and applied to high‐quality extreme daily precipitation measurements recorded in France at 331 weather stations during the time period 1980–2010.
- Published
- 2013
- Full Text
- View/download PDF
13. A new estimation method for Weibull-type tails
- Author
-
Dierckx, Goedele, Beirlant, Jan, De Waal, Dan, Guillou, Armelle, Institut de Recherche Mathématique Avancée (IRMA), Université Louis Pasteur - Strasbourg I-Centre National de la Recherche Scientifique (CNRS), and Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[MATH.MATH-ST]Mathematics [math]/Statistics [math.ST] ,[STAT.TH]Statistics [stat]/Statistics Theory [stat.TH] - Published
- 2009
- Full Text
- View/download PDF
14. Nonparametric estimation of conditional marginal excess moments
- Author
-
Yuri Goegebeur, Armelle Guillou, Nguyen Khanh Le Ho, Jing Qin, Department of Mathematics and Computer Science [Odense] (IMADA), University of Southern Denmark (SDU), Institut de Recherche Mathématique Avancée (IRMA), Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA), and Guillou, Armelle
- Subjects
Statistics and Probability ,Numerical Analysis ,[MATH.MATH-ST]Mathematics [math]/Statistics [math.ST] ,Statistics, Probability and Uncertainty ,[MATH.MATH-ST] Mathematics [math]/Statistics [math.ST] - Abstract
Several risk measures have been proposed in the literature, among them the marginal mean excess, defined as MME_p = \mathbb E[(Y^{(1)}-Q_1(1-p))_+|Y^{(2)}> Q_{2}(1-p)], provided \mathbb E|Y^{(1)}|< \infty, where (Y^{(1)}, Y^{(2)}) denotes a pair of risk factors, y_+:=\max(0,y), Q_j the quantile function of Y^{(j)}, j=1, 2, and p\in (0,1). In this paper we consider a generalization of this measure, where the random variables of main interest (Y^{(1)},Y^{(2)}) are observed together with a random covariate X \in \mathbb R^d, and where the Y^{(1)} excess is also power transformed. This leads to the concept of conditional marginal excess moment for which an estimator is proposed allowing extrapolation outside the data range. The main asymptotic properties of this estimator have been established, using empirical processes arguments combined with the multivariate extreme value theory. The finite sample behavior of the estimator is evaluated by a simulation experiment. We apply also our method on a vehicle insurance customer dataset.
- Published
- 2021
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.