1. The NANOGrav 12.5-year Data Set: Search for Non-Einsteinian Polarization Modes in the Gravitational-wave Background
- Author
-
Zaven Arzoumanian, Paul T. Baker, Harsha Blumer, Bence Bécsy, Adam Brazier, Paul R. Brook, Sarah Burke-Spolaor, Maria Charisi, Shami Chatterjee, Siyuan Chen, James M. Cordes, Neil J. Cornish, Fronefield Crawford, H. Thankful Cromartie, Megan E. DeCesar, Dallas M. DeGan, Paul B. Demorest, Timothy Dolch, Brendan Drachler, Justin A. Ellis, Elizabeth C. Ferrara, William Fiore, Emmanuel Fonseca, Nathan Garver-Daniels, Peter A. Gentile, Deborah C. Good, Jeffrey S. Hazboun, A. Miguel Holgado, Kristina Islo, Ross J. Jennings, Megan L. Jones, Andrew R. Kaiser, David L. Kaplan, Luke Zoltan Kelley, Joey Shapiro Key, Nima Laal, Michael T. Lam, T. Joseph W. Lazio, Duncan R. Lorimer, Tingting Liu, Jing Luo, Ryan S. Lynch, Dustin R. Madison, Alexander McEwen, Maura A. McLaughlin, Chiara M. F. Mingarelli, Cherry Ng, David J. Nice, Ken D. Olum, Timothy T. Pennucci, Nihan S. Pol, Scott M. Ransom, Paul S. Ray, Joseph D. Romano, Shashwat C. Sardesai, Brent J. Shapiro-Albert, Xavier Siemens, Joseph Simon, Magdalena S. Siwek, Renée Spiewak, Ingrid H. Stairs, Daniel R. Stinebring, Kevin Stovall, Jerry P. Sun, Joseph K. Swiggum, Stephen R. Taylor, Jacob E. Turner, Michele Vallisneri, Sarah J. Vigeland, Haley M. Wahl, Caitlin A. Witt, Unité Scientifique de la Station de Nançay (USN), Centre National de la Recherche Scientifique (CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire des Sciences de l'Univers en région Centre (OSUC), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Université d'Orléans (UO), Franche-Comté Électronique Mécanique, Thermique et Optique - Sciences et Technologies (UMR 6174) (FEMTO-ST), Université de Technologie de Belfort-Montbeliard (UTBM)-Ecole Nationale Supérieure de Mécanique et des Microtechniques (ENSMM)-Université de Franche-Comté (UFC), Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université Bourgogne Franche-Comté [COMUE] (UBFC)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique et Chimie de l'Environnement et de l'Espace (LPC2E), Observatoire des Sciences de l'Univers en région Centre (OSUC), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales [Paris] (CNES), and NANOGrav
- Subjects
noise ,family ,gravitation: model ,FOS: Physical sciences ,General Relativity and Quantum Cosmology (gr-qc) ,power spectrum ,01 natural sciences ,Bayesian ,General Relativity and Quantum Cosmology ,0103 physical sciences ,010303 astronomy & astrophysics ,pulsar ,High Energy Astrophysical Phenomena (astro-ph.HE) ,polarization ,010308 nuclear & particles physics ,gravitational radiation: background ,Astronomy and Astrophysics ,NANOGrav ,solar system ,Astrophysics - Astrophysics of Galaxies ,transverse ,space-time ,Space and Planetary Science ,Astrophysics of Galaxies (astro-ph.GA) ,correlation ,[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc] ,Astrophysics - High Energy Astrophysical Phenomena ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] - Abstract
We search NANOGrav's 12.5-year data set for evidence of a gravitational wave background (GWB) with all the spatial correlations allowed by general metric theories of gravity. We find no substantial evidence in favor of the existence of such correlations in our data. We find that scalar-transverse (ST) correlations yield signal-to-noise ratios and Bayes factors that are higher than quadrupolar (tensor transverse, TT) correlations. Specifically, we find ST correlations with a signal-to-noise ratio of 2.8 that are preferred over TT correlations (Hellings and Downs correlations) with Bayesian odds of about 20:1. However, the significance of ST correlations is reduced dramatically when we include modeling of the Solar System ephemeris systematics and/or remove pulsar J0030$+$0451 entirely from consideration. Even taking the nominal signal-to-noise ratios at face value, analyses of simulated data sets show that such values are not extremely unlikely to be observed in cases where only the usual TT modes are present in the GWB. In the absence of a detection of any polarization mode of gravity, we place upper limits on their amplitudes for a spectral index of $\gamma = 5$ and a reference frequency of $f_\text{yr} = 1 \text{yr}^{-1}$. Among the upper limits for eight general families of metric theories of gravity, we find the values of $A^{95\%}_{TT} = (9.7 \pm 0.4)\times 10^{-16}$ and $A^{95\%}_{ST} = (1.4 \pm 0.03)\times 10^{-15}$ for the family of metric spacetime theories that contain both TT and ST modes., Comment: 24 pages, 18 figures, 3 appendices. Please send any comments/questions to Nima Laal (laaln@oregonstate.edu)
- Published
- 2021
- Full Text
- View/download PDF