1. Structure, mechanical and tribological properties, and oxidation resistance of TaC/a-C:H films deposited by high power impulse magnetron sputtering
- Author
-
Alain Billard, Fei Gao, Frédéric Sanchette, Mohammad Arab Pour Yazdi, Olivier Heintz, Sheng-Chi Chen, Huan Luo, Hui Sun, Alexis de Monteynard, Franche-Comté Électronique Mécanique, Thermique et Optique - Sciences et Technologies (UMR 6174) (FEMTO-ST), Université de Technologie de Belfort-Montbeliard (UTBM)-Ecole Nationale Supérieure de Mécanique et des Microtechniques (ENSMM)-Centre National de la Recherche Scientifique (CNRS)-Université de Franche-Comté (UFC), Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université Bourgogne Franche-Comté [COMUE] (UBFC), Chang Gung University, Shandong University, Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB), Université de Technologie de Belfort-Montbeliard (UTBM)-Université de Bourgogne (UB)-Université Bourgogne Franche-Comté [COMUE] (UBFC)-Centre National de la Recherche Scientifique (CNRS), Laboratoire des Systèmes Mécaniques et d'Ingénierie Simultanée (LASMIS), Institut Charles Delaunay (ICD), Université de Technologie de Troyes (UTT)-Centre National de la Recherche Scientifique (CNRS)-Université de Technologie de Troyes (UTT)-Centre National de la Recherche Scientifique (CNRS), Université de Technologie de Belfort-Montbeliard (UTBM)-Ecole Nationale Supérieure de Mécanique et des Microtechniques (ENSMM)-Université de Franche-Comté (UFC), Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université Bourgogne Franche-Comté [COMUE] (UBFC)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Interdisciplinaire Carnot de Bourgogne [Dijon] (LICB), Université de Bourgogne (UB)-Université de Technologie de Belfort-Montbeliard (UTBM)-Centre National de la Recherche Scientifique (CNRS), and Université de Technologie de Troyes (UTT)
- Subjects
010302 applied physics ,Toughness ,Materials science ,Nanocomposite ,Process Chemistry and Technology ,02 engineering and technology ,021001 nanoscience & nanotechnology ,01 natural sciences ,Grain size ,Surfaces, Coatings and Films ,Electronic, Optical and Magnetic Materials ,Amorphous carbon ,Chemical engineering ,Phase (matter) ,0103 physical sciences ,Volume fraction ,Materials Chemistry ,Ceramics and Composites ,[CHIM]Chemical Sciences ,High-power impulse magnetron sputtering ,0210 nano-technology ,Deposition (law) ,ComputingMilieux_MISCELLANEOUS - Abstract
TaC/a-C:H films with varying carbon content within a narrow window were deposited employing HiPIMS in the Ar/C2H2 atmosphere. The DC deposited TaC/a-C:H reference films were prepared under the same deposition parameters for comparison. Analysis and comparison of the chemical bonding state, structure, mechanical and tribological properties, and oxidation resistance of the films were conducted, with the aim of emphasizing the differences in the nanocomposite structure and properties of the films correlated to deposition conditions. It reveals that the HiPIMS deposited TaC/a-C:H films outperform the DC deposited ones, exhibiting higher hardness and toughness, lower friction coefficient and wear rate, and stronger oxidation resistance. The improved performances in HiPIMS are attributed to HiPIMS plasma, which enables (i) the volume fraction of crystalline TaC phase and amorphous carbon phase, (ii) the stoichiometric ratio and grain size of the crystalline phase, (iii) the sp2/sp3 –C ratio, and (iv) the residual stress to develop in the manner that is conducive to film properties. It is demonstrated that HiPIMS plasma can be used as an effective means to modulate the chemical bonding state and nanocomposite structure of TaC/a-C:H film for achieving higher performance in terms of hard yet tough, wear and oxidation resistance.
- Published
- 2020
- Full Text
- View/download PDF