1. The structure of unstable power mechanisms
- Author
-
Abdou, Joseph, Centre d'économie de la Sorbonne (CES), Université Paris 1 Panthéon-Sorbonne (UP1)-Centre National de la Recherche Scientifique (CNRS), Paris School of Economics (PSE), École des Ponts ParisTech (ENPC)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris 1 Panthéon-Sorbonne (UP1)-Centre National de la Recherche Scientifique (CNRS)-École des hautes études en sciences sociales (EHESS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), and Ce travail a bénéficié d'une aide de l'Etat gérée par l'Agence Nationale de la Recherche au titre du programme ' Investissements d'avenir ' portant la référence ANR-10-LABX-93-01. This work was supported by the French National Research Agency, through the program Investissements d'Avenir, ANR-10--LABX-93-01.
- Subjects
Interaction form ,Nakamura number ,Effectivity function ,Strong equilibrium ,Solvability ,Collusion ,Stability index ,JEL: D - Microeconomics/D.D7 - Analysis of Collective Decision-Making/D.D7.D71 - Social Choice • Clubs • Committees • Associations ,[SHS.ECO]Humanities and Social Sciences/Economics and Finance ,Acyclicity ,Nash equilibrium ,JEL: C - Mathematical and Quantitative Methods/C.C7 - Game Theory and Bargaining Theory/C.C7.C70 - General - Abstract
International audience; We study the structure of unstable power mechanisms. A power mechanism is modeled by an interaction form, the solution of which is called a settlement. By stability, we mean the existence of some settlement for any preference profile. Configurations that produce instability are called cycles. We introduce a stability index that measures the difficulty of emergence of cycles. Structural properties such as exactness, superadditivity, subadditivity and maximality provide indications about the type of instability that may affect the mechanism. We apply our analysis to strategic game forms in the context of Nash-like solutions or core-like solutions. In particular, we establish an upper bound on the stability index of maximal interaction forms.
- Published
- 2012