1. Faster Modular Composition
- Author
-
Neiger, Vincent, Salvy, Bruno, Schost, Éric, Villard, Gilles, Sorbonne Université (SU), Polynomial Systems (PolSys), LIP6, Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de l'Informatique du Parallélisme (LIP), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS), Arithmetic and Computing (ARIC), Inria Grenoble - Rhône-Alpes, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire de l'Informatique du Parallélisme (LIP), Université de Lyon-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS), University of Waterloo [Waterloo], Cheriton School of Computer Science [Waterloo] (CS), Centre National de la Recherche Scientifique (CNRS), École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL), and Université de Lyon-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL)
- Subjects
FOS: Computer and information sciences ,Computer Science - Symbolic Computation ,[INFO.INFO-SC]Computer Science [cs]/Symbolic Computation [cs.SC] ,[INFO.INFO-CC]Computer Science [cs]/Computational Complexity [cs.CC] ,Computer Science - Computational Complexity ,[MATH.MATH-AC]Mathematics [math]/Commutative Algebra [math.AC] ,[INFO.INFO-DS]Computer Science [cs]/Data Structures and Algorithms [cs.DS] ,Symbolic Computation (cs.SC) ,Computational Complexity (cs.CC) - Abstract
A new Las Vegas algorithm is presented for the composition of two polynomials modulo a third one, over an arbitrary field. When the degrees of these polynomials are bounded by $n$, the algorithm uses $O(n^{1.43})$ field operations, breaking through the $3/2$ barrier in the exponent for the first time. The previous fastest algebraic algorithms, due to Brent and Kung in 1978, require $O(n^{1.63})$ field operations in general, and ${n^{3/2+o(1)}}$ field operations in the special case of power series over a field of large enough characteristic. If cubic-time matrix multiplication is used, the new algorithm runs in ${n^{5/3+o(1)}}$ operations, while previous ones run in $O(n^2)$ operations. Our approach relies on the computation of a matrix of algebraic relations that is typically of small size. Randomization is used to reduce arbitrary input to this favorable situation., 78 pages
- Published
- 2021