1. Linking morphology with activity through the lifetime of pretreated PtNi nanostructured thin film catalysts
- Author
-
Pascale Bayle-Guillemaud, David A. Cullen, Laure Guétaz, Andrew J. L. Steinbach, Miguel López-Haro, Mark K. Debe, Oak Ridge National Laboratory [Oak Ridge] (ORNL), UT-Battelle, LLC, Laboratoire d'Etude des Matériaux par Microscopie Avancée (LEMMA ), Modélisation et Exploration des Matériaux (MEM), Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Institut LITEN (CEA LITEN/DEHT/LCPEM), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Institut de Recherche Interdisciplinaire de Grenoble (IRIG), and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])
- Subjects
inorganic chemicals ,Materials science ,Nanoparticle ,Activation ,Nanotechnology ,Electrolyte ,Durability ,Catalysis ,Oxygen Reduction Activity ,Membrane Fuel-Cells ,General Materials Science ,Thin film ,Porosity ,Dissolution ,[PHYS]Physics [physics] ,Renewable Energy, Sustainability and the Environment ,Electrocatalysts ,General Chemistry ,Direct energy conversion ,Chemical engineering ,Electron tomography ,Nanoporosity ,Nanoparticles ,Stability - Abstract
International audience; The nanoscale morphology of highly active Pt3Ni7 nanostructured thin film fuel cell catalysts is linked with catalyst surface area and activity following catalyst pretreatments, conditioning and potential cycling. The significant role of fuel cell conditioning on the structure and composition of these extended surface catalysts is demonstrated by high resolution imaging, elemental mapping and tomography. The dissolution of Ni during fuel cell conditioning leads to highly complex, porous structures which were visualized in 3D by electron tomography. Quantification of the rendered surfaces following catalyst pretreatment, conditioning, and cycling shows the important role pore structure plays in surface area, activity, and durability.
- Published
- 2015
- Full Text
- View/download PDF