1. ScalaFlux: a scalable approach to quantify fluxes in metabolic subnetworks
- Author
-
Julia A. Vorholt, Patrick Kiefer, Stéphanie Heux, Jean-Charles Portais, Uwe Schmitt, Pierre Millard, Toulouse Biotechnology Institute (TBI), Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Scientific IT Services, Department of Biology [ETH Zürich] (D-BIOL), Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology [Zürich] (ETH Zürich), Métabolomique et Fluxomique (MetaToul) (TBI-MetaToul), MetaToul-MetaboHUB, Génopole Toulouse Midi-Pyrénées [Auzeville] (GENOTOUL), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Ecole Nationale Vétérinaire de Toulouse (ENVT), Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Université Fédérale Toulouse Midi-Pyrénées-Institut National de la Santé et de la Recherche Médicale (INSERM)-Génopole Toulouse Midi-Pyrénées [Auzeville] (GENOTOUL), Université Fédérale Toulouse Midi-Pyrénées-Institut National de la Santé et de la Recherche Médicale (INSERM)-Toulouse Biotechnology Institute (TBI), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Institut National de la Santé et de la Recherche Médicale (Inserm), ETH Zurich, ANR-16-CE11-0022,ENZINVIVO,Détermination in vivo des paramètres enzymatiques dans une voie métabolique synthétique(2016), Institut National de la Recherche Agronomique (INRA)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), Department of Biology, University of Memphis, Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), MetaToul FluxoMet (TBI-MetaToul), MetaboHUB-MetaToul, MetaboHUB-Génopole Toulouse Midi-Pyrénées [Auzeville] (GENOTOUL), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Ecole Nationale Vétérinaire de Toulouse (ENVT), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-MetaboHUB-Génopole Toulouse Midi-Pyrénées [Auzeville] (GENOTOUL), Université de Toulouse (UT)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Toulouse Biotechnology Institute (TBI), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), and Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)
- Subjects
Metabolic Analysis ,0301 basic medicine ,0106 biological sciences ,[SDV.BIO]Life Sciences [q-bio]/Biotechnology ,Computer science ,Biochemistry ,Physical Chemistry ,01 natural sciences ,0302 clinical medicine ,Polyisoprenyl Phosphates ,Metabolic flux analysis ,Metabolites ,Biology (General) ,Subnetwork ,flux métabolique ,Carbon Isotopes ,0303 health sciences ,Ecology ,Simulation and Modeling ,Systems Biology ,metabolic flux ,3. Good health ,Chemistry ,Bioassays and Physiological Analysis ,Reaction Dynamics ,Metabolic Engineering ,Computational Theory and Mathematics ,Modeling and Simulation ,Physical Sciences ,Scalability ,Metabolic Labeling ,Metabolic Pathways ,Biological system ,Network Analysis ,Metabolic Networks and Pathways ,Research Article ,Computer and Information Sciences ,QH301-705.5 ,Systems biology ,Saccharomyces cerevisiae ,Research and Analysis Methods ,Biosynthesis ,Models, Biological ,Metabolic engineering ,Metabolic Networks ,Cellular and Molecular Neuroscience ,03 medical and health sciences ,010608 biotechnology ,Genetics ,Molecular Biology Techniques ,Molecular Biology ,Ecology, Evolution, Behavior and Systematics ,030304 developmental biology ,Terpenes ,Biology and Life Sciences ,Robustness (evolution) ,Missing data ,Metabolic Flux Analysis ,Metabolic pathway ,Metabolism ,030104 developmental biology ,Cell Labeling ,Identifiability ,030217 neurology & neurosurgery - Abstract
13C-metabolic flux analysis (13C-MFA) allows metabolic fluxes to be quantified in living organisms and is a major tool in biotechnology and systems biology. Current 13C-MFA approaches model label propagation starting from the extracellular 13C-labeled nutrient(s), which limits their applicability to the analysis of pathways close to this metabolic entry point. Here, we propose a new approach to quantify fluxes through any metabolic subnetwork of interest by modeling label propagation directly from the metabolic precursor(s) of this subnetwork. The flux calculations are thus purely based on information from within the subnetwork of interest, and no additional knowledge about the surrounding network (such as atom transitions in upstream reactions or the labeling of the extracellular nutrient) is required. This approach, termed ScalaFlux for SCALAble metabolic FLUX analysis, can be scaled up from individual reactions to pathways to sets of pathways. ScalaFlux has several benefits compared with current 13C-MFA approaches: greater network coverage, lower data requirements, independence from cell physiology, robustness to gaps in data and network information, better computational efficiency, applicability to rich media, and enhanced flux identifiability. We validated ScalaFlux using a theoretical network and simulated data. We also used the approach to quantify fluxes through the prenyl pyrophosphate pathway of Saccharomyces cerevisiae mutants engineered to produce phytoene, using a dataset for which fluxes could not be calculated using existing approaches. A broad range of metabolic systems can be targeted with minimal cost and effort, making ScalaFlux a valuable tool for the analysis of metabolic fluxes., Author summary Metabolism is a fundamental biochemical process that enables all organisms to operate and grow by converting nutrients into energy and ‘building blocks’. Metabolic flux analysis allows the quantification of metabolic fluxes in vivo, i.e. the actual rates of biochemical conversions in biological systems, and is increasingly used to probe metabolic activity in biology, biotechnology and medicine. Isotope labeling experiments coupled with mathematical models of large metabolic networks are the most commonly used approaches to quantify fluxes within cells. However, many biological questions only require flux information from a subset of reactions, not the full network. Here, we propose a new approach with three main advantages over existing methods: better scalability (fluxes can be measured through a single reaction, a metabolic pathway or a set of pathways of interest), better robustness to missing data and information gaps, and lower requirements in terms of measurements and computational resources. We validate our method both theoretically and experimentally. ScalaFlux can be used for high-throughput flux measurements in virtually any metabolic system and paves the way to the analysis of dynamic fluxome rearrangements.
- Published
- 2020
- Full Text
- View/download PDF