1. Strong-Field Gravity Tests with the Double Pulsar
- Author
-
M. Kramer, I. H. Stairs, R. N. Manchester, N. Wex, A. T. Deller, W. A. Coles, M. Ali, M. Burgay, F. Camilo, I. Cognard, T. Damour, G. Desvignes, R. D. Ferdman, P. C. C. Freire, S. Grondin, L. Guillemot, G. B. Hobbs, G. Janssen, R. Karuppusamy, D. R. Lorimer, A. G. Lyne, J. W. McKee, M. McLaughlin, L. E. Münch, B. B. P. Perera, N. Pol, A. Possenti, J. Sarkissian, B. W. Stappers, G. Theureau, Laboratoire de Physique et Chimie de l'Environnement et de l'Espace (LPC2E), Observatoire des Sciences de l'Univers en région Centre (OSUC), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales [Paris] (CNES), Unité Scientifique de la Station de Nançay (USN), Centre National de la Recherche Scientifique (CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire des Sciences de l'Univers en région Centre (OSUC), Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Université d'Orléans (UO), Institut des Hautes Etudes Scientifiques (IHES), IHES, Laboratoire d'études spatiales et d'instrumentation en astrophysique (LESIA (UMR_8109)), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Univers et Théories (LUTH (UMR_8102)), and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7)
- Subjects
higher-order ,Astronomy ,QC1-999 ,Astrophysics::High Energy Astrophysical Phenomena ,deflection ,binary ,FOS: Physical sciences ,General Physics and Astronomy ,General Relativity and Quantum Cosmology (gr-qc) ,spin ,01 natural sciences ,General Relativity and Quantum Cosmology ,strong field ,0103 physical sciences ,propagation ,general relativity ,010306 general physics ,neutron star ,010303 astronomy & astrophysics ,orbit ,equation of state ,pulsar ,High Energy Astrophysical Phenomena (astro-ph.HE) ,Quantum Physics ,effect ,precision measurement ,Physics ,photon ,formation ,deformation ,gravitational radiation ,Condensed Matter Physics ,moment ,gravitation ,relativistic ,[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc] ,Astrophysics - High Energy Astrophysical Phenomena ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,Astronomical and Space Sciences - Abstract
Continued observations of the Double Pulsar, PSR J0737-3039A/B, consisting of two radio pulsars (A and B) that orbit each other with a period of 2.45hr in a mildly eccentric (e=0.088) binary system, have led to large improvements in the measurement of relativistic effects in this system. With a 16-yr data span, the results enable precision tests of theories of gravity for strongly self-gravitating bodies and also reveal new relativistic effects that have been expected but are now observed for the first time. These include effects of light propagation in strong gravitational fields which are currently not testable by any other method. We observe retardation and aberrational light-bending that allow determination of the pulsar's spin direction. In total, we have detected seven post-Keplerian (PK) parameters, more than for any other binary pulsar. For some of these effects, the measurement precision is so high that for the first time we have to take higher-order contributions into account. These include contributions of A's effective mass loss (due to spin-down) to the observed orbital period decay, a relativistic deformation of the orbit, and effects of the equation of state of super-dense matter on the observed PK parameters via relativistic spin-orbit coupling. We discuss the implications of our findings, including those for the moment of inertia of neutron stars. We present the currently most precise test of general relativity's (GR's) quadrupolar description of gravitational waves, validating GR's prediction at a level of $1.3 \times 10^{-4}$ (95% conf.). We demonstrate the utility of the Double Pulsar for tests of alternative theories by focusing on two specific examples and discuss some implications for studies of the interstellar medium and models for the formation of the Double Pulsar. Finally, we provide context to other types of related experiments and prospects for the future., 56 pages, 23 Figures. Published by Physical Review X. Uploaded ArXiv version is authors' (pre-proof) version with abbreviated abstract. Resubmission for updated acknowledgement information. For final published version see https://link.aps.org/doi/10.1103/PhysRevX.11.041050
- Published
- 2021
- Full Text
- View/download PDF