1. Superelastic Behavior of Biomedical Metallic Alloys
- Author
-
Lorene Heraud, T. Gloriant, I. Thibon, Philippe Castany, M. F. Ijaz, Institut des Sciences Chimiques de Rennes (ISCR), Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Ecole Nationale Supérieure de Chimie de Rennes (ENSCR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA), King Saud University [Riyadh] (KSU), Mechanics surfaces and materials processing (MSMP), Arts et Métiers Sciences et Technologies, HESAM Université (HESAM)-HESAM Université (HESAM), French ANR French National Research Agency (ANR) [BIOMIMETIS ANR-13-IS09-0008-01], Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Ecole Nationale Supérieure de Chimie de Rennes (ENSCR)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), HESAM Université - Communauté d'universités et d'établissements Hautes écoles Sorbonne Arts et métiers université (HESAM)-HESAM Université - Communauté d'universités et d'établissements Hautes écoles Sorbonne Arts et métiers université (HESAM), and ANR-13-IS09-0008,BIOMIMETIS,Implants médicaux biocompatibles élaborés à partir d'alliages superélastiques à base de titane nitrurés(2013)
- Subjects
Materials science ,Alloy ,R-Phase ,0211 other engineering and technologies ,02 engineering and technology ,engineering.material ,Plasticity ,Sciences de l'ingénieur ,01 natural sciences ,0103 physical sciences ,Ultimate tensile strength ,[CHIM]Chemical Sciences ,Texture (crystalline) ,021102 mining & metallurgy ,010302 applied physics ,metal and alloys ,Metallurgy ,Metals and Alloys ,technology, industry, and agriculture ,Condensed Matter Physics ,equipment and supplies ,Mechanics of Materials ,Nickel titanium ,Diffusionless transformation ,Martensite ,engineering ,superelastic - Abstract
International audience; In this this work, superelastic NiTi and Ni-free Ti-23Hf-3Mo-4Sn biomedical alloys were investigated by tensile tests in relationship with their microstructures. To follow the stress-induced martensitic transformations occurring in these alloys, in situ tensile tests under synchrotron beam were conducted. In NiTi, an intermediate trigonal R phase, which is first stress-induced before the B19 ' martensitic phase, was identified. However, the Ti-23Hf-3Mo-4Sn alloy does not present a transitional phase, and a direct beta into alpha '' reversible stress-induced martensitic transformation was observed. With NiTi, all the applied strain is recovered after unloading, and no residual plastic deformation occurs. However, the strain is not completely recovered with the Ti-23Hf-3Mo-4Sn alloy, and residual plastic strain was observed to prevent a complete recovery, thus explaining why the strain recovery is lower for Ti-23Hf-3Mo-4Sn compared with NiTi. We also showed that the maximum strain recovery depends on the texture in the Ti-23Hf-3Mo-4Sn alloy. The favorable texture leading to the highest strain recovery (4.6 pct) is the {111}< 110 and rang;(beta) texture, which can be obtained by a short-time solution treatment (0.3 ks) at 1073 K with this alloy.
- Published
- 2020
- Full Text
- View/download PDF