1. The December 2010 outbreak of a major storm in Saturn's atmosphere: Observations and models
- Author
-
Sanchez-Lavega, A., Teresa del Río Gaztelurrutia, Hueso, R., Gómez-Forrellad, J. M., Sanz-Requena, J. F., Legarreta, J., García-Melendo, E., Colas, F., Lecacheux, J., Fletcher, L. N., Barrado-Navascués, D., Parker, D., Física Aplicada I, Escuela Superior de Ingenieros, Universidad del Pais Vasco, Esteve Duran Observatory Foundation, Universidad Europea Miguel de Cervantes (UEMC), Institut de Mécanique Céleste et de Calcul des Ephémérides (IMCCE), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Lille-Centre National de la Recherche Scientifique (CNRS), Observatoire de Paris, and Université Paris sciences et lettres (PSL)
- Subjects
[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] - Abstract
International audience; On December 5, 2010, a major storm erupted in Saturn's northern hemisphere at a planetographic latitude of 37.7 deg [1]. These phenomena are known as "Great White Spots" (GWS) and they have been observed once per Saturn year since the first case confidently reported in 1876. The last event occurred at Saturn's Equator in 1990 [2]. A GWS differs from similar smaller-scale storms in that it generates a planetary-scale disturbance that spreads zonally spanning the whole latitude band. Studies of the 1990 case indicated that the storm produced a long-term substantial change in the cloud and haze structure around the tropopause level, and in the equatorial winds. We report on the evolution and motions of the new GWS and its associated disturbance during the months following the outbreak, based mainly on high quality images obtained in the visual range submitted to the International Outer Planet Watch PVOL database [3], with the 1m telescope at Pic-du-Midi Observatory and 2.2 m telescope at Calar Alto Observatory. The high temporal sampling and coverage allowed us to study the dynamics of the GWS in detail and the multi-wavelength observations provide information on its cloud top structure. We present non-linear simulations using the EPIC code of the evolution of the potential vorticity generated by an impulsive and localized Gaussian heat pulse that compare extraordinary well to the observed cloud field evolution.
- Published
- 2011