1. Search for eV (pseudo)scalar penetrating particles in the SPS neutrino beam
- Author
-
Astier, P., Autiero, D., Baldisseri, A., Baldo-Ceolin, M., Ballocchi, G., Banner, M., Bassompierre, G., Benslama, K., Besson, N., Bird, I., Blumenfeld, B., Bobisut, F., Bouchez, J., Boyd, S., Bueno, A., Bunyatov, S., Camilleri, L., Cardini, A., Cattaneo, P. W., Cavasinni, V., Cervera-Villanueva, A., Collazuol, G., Conforto, G., Conta, C., Contalbrigo, M., Cousins, R., Daniels, D., Degaudenzi, H., Del Prete, T., Santo, A., Dignan, T., Di Lella, L., Do Couto, E. Silva E., Dumarchez, J., Ellis, M., Feldman, G. J., Ferrari, R., Ferrhre, D., Flaminio, V., Fraternali, M., Gaillard, J. M., Gangler, E., Geiser, A., Geppert, D., Gibin, D., Gninenko, S. N., Godley, A., Gsmez-Cadenas, J. J., Gosset, J., Gossling, C., Gouanere, M., Grant, A., Graziani, G., Guglielmi, A., Hagner, C., Hernando, J., Hubbard, D., Hurst, P., Hyett, N., Iacopini, E., Joseph, C., Juget, F., Kirsanov, M. M., Klimov, O., Kokkonen, J., Kovzelev, A., Krasnikov, N. V., Krasnoperov, A., Kuznetsov, V. E., Lacaprara, S., Lachaud, C., Lakic, B., Lanza, A., La Rotonda, L., Laveder, M., antoine letessier selvon, Levy, J. M., Linssen, L., Ljubicic, A., Long, J., Lupi, A., Marchionni, A., Martelli, F., Mechain, X., Mendiburu, J. P., Meyer, J. P., Mezzetto, M., Mishra, S. R., Moorhead, G. F., Mossuz, L., Nedelec, P., Yu. Nefedov, Nguyen-Mau, C., Orestano, D., Pastore, F., Peak, L. S., Pennacchio, E., Pessard, H., Petti, R., Placci, A., Polesello, G., Pollmann, D., Yu Polyarush, A., Popov, B., Poulsen, C., Rico, J., Roda, C., Rubbia, A., Salvatore, F., Schahmaneche, K., Schmidt, B., Schmidt, T., Sevior, M., Sillou, D., Soler, F. J. P., Gabriella Sozzi, Steele, D. D., Steininger, M., Stiegler, U., Stipcevic, M., Stolarczyk, T., Tareb-Reyes, M., Taylor, G. N., Tereshchenko, V., Toropin, A. N., Touchard, A. M., Tovey, S. N., Tran, M. T., Tsesmelis, E., Ulrichs, J., Vacavant, L., Valdata-Nappi, M., Valuev, V., Vannucci, F., Varvell, K. E., Veltri, M., Vercesi, V., Verkindt, D., Vieira, J. M., Vinogradova, T., Volkov, S. A., Weber, F. V., Weisse, T., Wilson, F. F., Winton, L. J., Yabsley, B. D., Zaccone, H., Zioutas, K., Zuber, K., Zuccon, P., Laboratoire d'Annecy de Physique des Particules (LAPP), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS), NOMAD, and BOMBAR, Claudine
- Subjects
Physics ,Nuclear and High Energy Physics ,Particle physics ,Photon ,[PHYS.HEXP] Physics [physics]/High Energy Physics - Experiment [hep-ex] ,010308 nuclear & particles physics ,Physics::Instrumentation and Detectors ,Astrophysics::High Energy Astrophysical Phenomena ,Virtual particle ,Física ,Scalar boson ,01 natural sciences ,7. Clean energy ,Nuclear physics ,Pseudoscalar ,Neutrino detector ,0103 physical sciences ,[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex] ,High Energy Physics::Experiment ,Neutrino ,010306 general physics ,Axion ,Primakoff effect ,Particle Physics - Experiment - Abstract
We carried out a model-independent search for light scalar or pseudoscalar particles $a$'s (an example of which is the axion) that couple to two photons by using a photon-regeneration method at high energies allowing a substantial increase in the sensitivity to $eV$ masses.\ The experimental set-up is based on elements of the CERN West Area Neutrino Facility (WANF) beam line and theNOMAD neutrino detector.\ The new particles, if they exist, could be produced through the Primakoff effect in interactions of high energy photons, generated by the 450 $GeV$ protons in the CERN SPS neutrino target, with virtual photons from the WANF horn magnetic field.\ The particles would penetrate the downstream shieldingand would be observed in the NOMAD neutrino detector through their re-conversion into real high energy photons byinteracting with the virtual photons from the magnetic field of the NOMAD dipole magnet.\ From the analysis of the data collected during the 1996 run with $1.08\times10^{19}$ protons on target, 312 candidate events with energy between 5 and 140 $GeV$ were found.\ This number is in general agreement with the expectation of 272$\pm$18 background events from standard neutrino processes.\ A 90 $\% ~CL$ upper limit on the $a\gamma\gamma$-coupling $g_{a\gamma\gamma}
- Published
- 2000