1. Use of lignocellulosic materials and 3D printing for the development of structured monolithic carbon materials
- Author
-
Didier Chaussy, Philippe Grosseau, Ying Shao, Davide Beneventi, Chamseddine Guizani, Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Laboratoire Génie des procédés papetiers (LGP2 ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National Polytechnique de Grenoble (INPG)-Centre National de la Recherche Scientifique (CNRS), École des Mines de Saint-Étienne (Mines Saint-Étienne MSE), Institut Mines-Télécom [Paris] (IMT), Université de Lyon, Centre National de la Recherche Scientifique (CNRS), Laboratoire Georges Friedel (LGF-ENSMSE), Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-École des Mines de Saint-Étienne (Mines Saint-Étienne MSE), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT), Centre Sciences des Processus Industriels et Naturels (SPIN-ENSMSE), Département Procédés de Mise en oeuvre des Milieux Granulaires (PMMG-ENSMSE), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-École des Mines de Saint-Étienne (Mines Saint-Étienne MSE), Université de Grenoble Alpes - LGP2, Université Grenoble Alpes ( UGA ), Institut polytechnique de Grenoble - Grenoble Institute of Technology ( Grenoble INP ), Laboratoire Génie des procédés papetiers ( LGP2 ), Centre Technique du Papier ( CTP ) -Institut National Polytechnique de Grenoble ( INPG ) -École Française de Papeterie et des Industries Graphiques-Centre National de la Recherche Scientifique ( CNRS ), École des Mines de Saint-Étienne ( Mines Saint-Étienne MSE ), Institut Mines-Télécom [Paris], Centre National de la Recherche Scientifique ( CNRS ), UMR 5307 - Laboratoire Georges Friedel ( LGF-ENSMSE ), Institut Mines-Télécom [Paris]-Institut Mines-Télécom [Paris], Centre Sciences des Processus Industriels et Naturels ( SPIN-ENSMSE ), Département Procédés de Mise en oeuvre des Milieux Granulaires ( PMMG-ENSMSE ), Institut Mines-Télécom [Paris]-Institut Mines-Télécom [Paris]-École des Mines de Saint-Étienne ( Mines Saint-Étienne MSE ), Laboratoire Génie des procédés papetiers [1995-2019] (LGP2 [1995-2019]), Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique de Grenoble (INPG)-Institut polytechnique de Grenoble - Grenoble Institute of Technology [2007-2019] (Grenoble INP [2007-2019]), and Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-Université de Lyon-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Thixotropy ,Materials science ,chemistry.chemical_element ,02 engineering and technology ,010402 general chemistry ,Electrical conductivity Energy storage device ,01 natural sciences ,Industrial and Manufacturing Engineering ,[SPI.MAT]Engineering Sciences [physics]/Materials ,chemistry.chemical_compound ,Rheology ,[SPI.GPROC]Engineering Sciences [physics]/Chemical and Process Engineering ,Cellulose ,Composite material ,Porosity ,Elastic modulus ,ComputingMilieux_MISCELLANEOUS ,Mechanical Engineering ,[ SPI.GPROC ] Engineering Sciences [physics]/Chemical and Process Engineering ,3D printing ,Carbonization ,021001 nanoscience & nanotechnology ,Microstructure ,0104 chemical sciences ,chemistry ,Mechanics of Materials ,Ceramics and Composites ,0210 nano-technology ,Carbon ,Pyrolysis ,Bio-sourced material - Abstract
International audience; In the present work, electrically conductive and mechanically resistant carbon structures were elaborated by 3D printing and subsequent pyrolysis using microfibrillated cellulose/lignosulfonate/cellulose powder (labeled as MFC/LS/CP) blends. The processability of MFC/LS/CP slurries by 3D printing was examined by rheological tests in both steady flow and thixotropic modes. The printed MFC/LS/CP pastes were self-standing, provided a high printing definition and were proved to be morphologically stable to air drying and the subsequent pyrolysis. Pyrolysis at a slow rate (0.2 °C/min) to a final temperature ranging between 400 and 1200 °C was used to manufacture MFC/LS/CP carbons. The TGA/DTG was applied to monitor the thermal degradation of MFC/LS/CP materials in blends as well as in a separated form. The resulting carbons were further characterized in terms of morphology, microstructure and physical properties (such as density, electrical conductivity and mechanical strength). At 900 °C, MFC/LS/CP carbons displayed a high electrical conductivity of 47.8 S/cm together with a low density of 0.74 g/cm3 and a porosity of 0.58. They also achieved an elastic modulus of 6.62 GPa. Such interesting electrical and mechanical properties would lead to a promising application of MFC/LS/CP-derived biocarbons in energy storage devices as electrode materials in close future.
- Published
- 2018
- Full Text
- View/download PDF