7 results on '"Wolf, Sylvie"'
Search Results
2. Stratigraphy and Tectonics of the Continental Norfolk Ridge, SW Pacific Ocean
- Author
-
Collot, Julien, Roest, Walter, Sutherland, Rupert, Patriat, Martin, Etienne, Samuel, Bordenave, Aurélien, Marcaillou, Boris, Schnurle, Philippe, Juan, Caroline, Barker, Dan, Stratford, Wanda Rose, Williams, Simon J., Wolf, Sylvie, Clerc, Camille, Crundwell, Martin, Service de la Géologie de Nouvelle Calédonie, Direction de l'Industrie, des Mines et de l'Energie de Nouvelle Calédonie, Unité de recherche Géosciences Marines (Ifremer) (GM), Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER), GNS Science [Lower Hutt], GNS Science, Géoressources et environnement, Institut Polytechnique de Bordeaux (Bordeaux INP)-Université Bordeaux Montaigne, Géoazur (GEOAZUR 7329), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de la Côte d'Azur, COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD [France-Sud]), Laboratoire de Géosciences Marines (LGM), Université Pierre et Marie Curie - Paris 6 (UPMC)-IPG PARIS-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), University of Warwick [Coventry], IFP Energies nouvelles (IFPEN), Université de la Nouvelle-Calédonie (UNC), and AGU
- Subjects
[SDU.STU.TE]Sciences of the Universe [physics]/Earth Sciences/Tectonics ,[SDU.STU.GP]Sciences of the Universe [physics]/Earth Sciences/Geophysics [physics.geo-ph] ,[SDU.STU]Sciences of the Universe [physics]/Earth Sciences - Abstract
International audience; The Norfolk Ridge is a north-south trending ca. 1000 x 80 km bathymetric high located along the easternmost edge of the Zealandia continent at ca. 1 km water-depth. It lies in a key tectonic position which marks the boundary between Neogene subduction-related arcs and backarc basins to the east (e.g. 3-4 km deep Norfolk Basin) and Mesozoic to Paleogene continental basins to the west (e.g. 2-3 km deep New Caledonia and Reinga basins). The ridge is emergent in New Caledonia and New Zealand where obduction is known to have occurred in the late Paleogene to early Neogene. It is also hypothesized to be proximal to where the Tonga Kermadec Subduction initiated. Yet, the structure, geology and stratigraphy of the Norfolk Ridge remain largely unknown. New geophysical and geological data from the TECTA and VESPA voyages acquired in 2015 onboard RV L’Atalante reveal the structural style and stratigraphy of the ridge. It is composed of a thick sedimentary succession perched between the Norfolk and New Caledonia basins. Two main seismic units are observed. The lower unit (NR1) is thick (> 2 s twt), tilted east towards the Norfolk Basin and its top is marked by a major erosional unconformity. The upper unit (NR2) is thinner (< 0.5 s twt), likely composed of hemipelagic sediments affected by deep sea currents; and hence it drapes the ridge unevenly, exposing NR1 on the seafloor in many places. Some VESPA rock dredges were made accross the unconformity and sampled Oligocene shallow water carbonates. Volcanoes are prominent in several sectors of the ridge and post-date the erosional unconformity. Both the eastern and western margins of the ridge are affected by normal faulting that also seemingly post-dates the erosional event. No evidence of contractional deformation is observed on the ridge, except very locally close to New Caledonia and within Reinga Basin where contraction is widespread. Collectively these new observations indicate the ridge underwent important vertical motions (>1 km) that in the Eocene-Oligocene, but – surprisingly – without evidences for contraction. These events were closely followed by, or synchronous with, a volcanic episode and normal faulting that formed the ridge’s present-day morphology. This calls into question the modalities of the induced subduction initiation model that is proposed for the region.
- Published
- 2019
3. Interaction des failles sismiques : modélisation mathématique et numérique de l'instabilité du glissement
- Author
-
Wolf, Sylvie, Laboratoire de Géophysique Interne et Tectonophysique (LGIT), Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Laboratoire Central des Ponts et Chaussées (LCPC)-Centre National de la Recherche Scientifique (CNRS), Université Joseph-Fourier - Grenoble I, Michel Campillo, Ion Ionescu, Laboratoire Central des Ponts et Chaussées (LCPC)-Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Mathématiques (LAMA), Centre National de la Recherche Scientifique (CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry]), Campillo Michel, Wolf, Sylvie, Talour, Pascale, Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Laboratoire Central des Ponts et Chaussées (LCPC)-Institut des Sciences de la Terre (ISTerre), Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-PRES Université de Grenoble-Institut de recherche pour le développement [IRD] : UR219-Institut national des sciences de l'Univers (INSU - CNRS)-Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux (IFSTTAR)-Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS)-PRES Université de Grenoble-Institut de recherche pour le développement [IRD] : UR219-Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux (IFSTTAR), Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS), Institut des Sciences de la Terre [2011-2015] (ISTerre [2011-2015]), Université Joseph Fourier - Grenoble 1 (UJF)-Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux (IFSTTAR)-Institut national des sciences de l'Univers (INSU - CNRS)-Institut de recherche pour le développement [IRD] : UR219-PRES Université de Grenoble-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux (IFSTTAR)-Institut national des sciences de l'Univers (INSU - CNRS)-Institut de recherche pour le développement [IRD] : UR219-PRES Université de Grenoble-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Laboratoire Central des Ponts et Chaussées (LCPC)-Observatoire des Sciences de l'Univers de Grenoble [1985-2015] (OSUG [1985-2015]), and Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology [2007-2019] (Grenoble INP [2007-2019])-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut polytechnique de Grenoble - Grenoble Institute of Technology [2007-2019] (Grenoble INP [2007-2019])-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
fault ,seismic waves ,[SDE.MCG]Environmental Sciences/Global Changes ,[SDU.STU.TE] Sciences of the Universe [physics]/Earth Sciences/Tectonics ,friction ,ondes sismiques ,[SDU.STU]Sciences of the Universe [physics]/Earth Sciences ,wave propagation ,faille ,decomposition de domaine ,fault interaction ,cycle sismique ,mixed finite elements ,analyse spectrale ,earthquakes ,failles ,modélisation ,[SDU.STU.TE]Sciences of the Universe [physics]/Earth Sciences/Tectonics ,seismes ,frottement ,[INFO.INFO-MO]Computer Science [cs]/Modeling and Simulation ,spectral analysis ,elements finis mixtes ,[SDE.MCG] Environmental Sciences/Global Changes ,domain decomposition ,propagation d'onde ,[SDU.STU] Sciences of the Universe [physics]/Earth Sciences ,[INFO.INFO-MO] Computer Science [cs]/Modeling and Simulation - Abstract
We model the processes of unstable slip, considering the complex geometry of fault systems and some friction law deduced from laboratory experiments. We define faults as interfaces of discontinuity in a perfect elastic body - the crust - and we use a slip weakening friction law, assuming that, as the slip grows, the medium's resistance decreases from the static to the dynamic threshold.We propose two numerical methods. The first one models the spontaneous evolution of a fault network which is initially submitted to a given stress field, and to which we apply an initial velocity perturbation. A Newmark time scheme is used, together with a finite element mesh and a domain decomposition method. The model reveals to be efficient to capture slip instabilities, and in particular the initiation phase which occurs before the phase of rupture propagation and is characterized by a self-similar shape and an exponential growth with time of the slip. Numerical experiments show that fault interaction, on fault segments having a significant overlap, reveals through the existence of "shadow zones" in which the slip is inhibited by stress drop. In the case of two fault segments with an important overlap, slip profiles are strongly asymmetric as one of the stress singularities vanishes at one of the fault tips.The second numerical scheme handles the nonlinear spectral analysis of the initiation problem, "pseudo-linearized" in the vicinity of the equilibrium position where the fault system is initially homogeneously at the static resistance threshold. The nonlinearity of the problem comes from the existence of shadow zones, which geometry is a priori unknown. Through this analysis, we find the eigenmode bearing the signature of initiation, i.e. the self-similar shape mentioned above. The static version of this modal analysis leads to the definition of a stability criterion for fault networks, i.e. the critical value of the weakening rate : beyond this value, an episode of stable slip will give rise to a seismic event.We assume that the nonlinear static mode, characterizing a weakening behavior at the stability limit, can be used to describe the cumulative slip at tectonic time scale on a particular system of normal faults in Afar, knowing the slip profiles measured at the surface. We show a good fit between the observed slip patterns and the static mode, assuming a particular choice of the weakening profile. We draw some conclusions in terms of interaction, propagation and/or branching of the fault segments. Finally, we describe two additional physical applications of our modeling :1) the influence of secondary fracturing (damage) on the slip patterns2) the optimal geometrical parameters that favor the branching of two fault segments propagating toward each other., Nous modelisons les processus de glissement instable, en tenant compte de la geometrie souvent complexe des systemes de failles et des lois de frottement observees en laboratoire. Nous assimilons les failles a des interfaces de discontinuite dans un milieu elastique parfait, la croute, et utilisons une loi de frottement dependant du glissement deduite d'experiences qui montrent que la resistance du materiau diminue du seuil statique au seuil dynamique, proportionnellement au glissement. Nous proposons deux methodes numeriques. La premiere a pour but de simuler l'evolution temporelle spontanee d'un reseau de faille, soumis initialement a un champ de contraintes donne et auquel nous appliquons une perturbation initiale en vitesse. Elle utilise un schema de type Newmark en temps, et une discretisation spatiale en elements finis avec decomposition de domaine. Elle se revele capable de capturer efficacement les instabilites du glissement, et en particulier la phase d'initiation, qui precede la propagation de la rupture dynamique et qui se caracterise par une forme auto-similaire et une croissance exponentielle du glissement au cours du temps. Des experiences numeriques montrent que l'interaction, sur des segments de faille presentant un recouvrement significatif, se manifeste par l'existence de « zones d'ombre » dans lesquelles les contraintes sont dechargees et le glissement inhibe. En cas de recouvrement important de deux segments de faille, on observe une dissymetrie des profils de glissement, correspondant a la disparition de la singularite de contraintes a l'une des pointes de faille.Le deuxieme schema numerique realise l'analyse spectrale non lineaire du probleme de l'initiation « pseudo-linearise » autour de la position d'équilibre dans laquelle le système de failles est initialement au seuil de resistance statique. La non-linearite du probleme provient de la prise en compte des zones d'ombre dont on ne connait pas la geometrie a priori. Cette analyse permet de trouver le mode qui porte la signature de l'initiation, c'est-a-dire la forme auto-similaire remarquee plus haut. La version statique de cette analyse modale fournit un critere de stabilite des reseaux de failles, c'est-a-dire la valeur limite du taux d'affaiblissement au-dela de laquelle un episode de glissement donnera lieu a un evenement sismique.Nous faisons l'hypothese que le mode non lineaire statique, qui caracterise un comportement en affaiblissement a la limite de la stabilite, peut etre utilise pour decrire le glissement cumule a l'echelle tectonique sur un reseau de failles normales particulier en Afar, dont nous connaissons les glissements mesures en surface. Nous montrons qu'un choix judicieux du profil d'affaiblissement « equivalent » a l'echelle tectonique permet un bon accord entre le glissement observe et le mode statique. Nous en tirons des conclusions en termes d'interaction, mais aussi de propagation et/ou branchement des segments de failles. Enfin, nous decrivons deux autres applications : 1) l'influence de la fracturation secondaire (endommagement) sur la forme du glissement2) les parametres geometriques favorables a l'apparition d'une zone de relai entre deux segments de faille se propageant l'un vers l'autre.
- Published
- 2003
4. An interface fault model for sedimentary basin simulation
- Author
-
Faille, Isabelle, Cacas, Marie-Christine, Desroziers, Sylvain, Havé, Pascal, Willien, Françoise, Wolf, Sylvie, Bertrand, Françoise, and IFP Energies nouvelles (IFPEN)
- Subjects
[SDE.MCG] Environmental Sciences/Global Changes ,[PHYS.PHYS.PHYS-GEO-PH] Physics [physics]/Physics [physics]/Geophysics [physics.geo-ph] ,[SDU.STU.GP]Sciences of the Universe [physics]/Earth Sciences/Geophysics [physics.geo-ph] ,[SDE.MCG]Environmental Sciences/Global Changes ,[SDU.STU.GP] Sciences of the Universe [physics]/Earth Sciences/Geophysics [physics.geo-ph] ,[PHYS.PHYS.PHYS-GEO-PH]Physics [physics]/Physics [physics]/Geophysics [physics.geo-ph] ,Hardware_PERFORMANCEANDRELIABILITY - Abstract
International audience; We present an interface fault model which is compatible with basin modeling. It considers thal the fault zone is represented by two interfaces, one for each side of the fault which is meshed conformai with its neighboring block and that can move relative! y to the other side. Combined with a Fini te Volume discretisation, this approach leads to fault-fault fluxes across fault faces that do not match. Results for one-phase and two phase flow are shown.
- Published
- 2013
5. Effect of fluid release on intermediate depth subduction processes: Insights from fully-coupled numerical modelling
- Author
-
Angiboust, Samuel, Wolf, Sylvie, Burov, Evgenii, Agard, Philippe, Yamato, Philippe, Institut des Sciences de la Terre de Paris (iSTeP), Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS), Systèmes Tectoniques, Géosciences Rennes (GR), Université de Rennes (UR)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire des Sciences de l'Univers de Rennes (OSUR), Université de Rennes (UR)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Centre National de la Recherche Scientifique (CNRS)-Université de Rennes (UR)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire des Sciences de l'Univers de Rennes (OSUR), Université de Rennes (UR)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Observatoire des Sciences de l'Univers de Rennes (OSUR)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Centre National de la Recherche Scientifique (CNRS)-Observatoire des Sciences de l'Univers de Rennes (OSUR)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES), Dubigeon, Isabelle, Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre Armoricain de Recherches en Environnement-Centre National de la Recherche Scientifique (CNRS)-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre Armoricain de Recherches en Environnement-Centre National de la Recherche Scientifique (CNRS), and Université de Rennes (UR)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre Armoricain de Recherches en Environnement-Centre National de la Recherche Scientifique (CNRS)-Université de Rennes (UR)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre Armoricain de Recherches en Environnement-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[SDU.STU] Sciences of the Universe [physics]/Earth Sciences ,[SDU.STU]Sciences of the Universe [physics]/Earth Sciences ,ComputingMilieux_MISCELLANEOUS - Abstract
International audience; A wide range of geophysical/petrological data indicates that large amounts of water are released in subduction zones during the burial of oceanic lithosphere through metamorphism and associated dehydration reactions. Large volumes of aqueous fluids are expected and observed in the mantle wedge, just below the continental Moho. Recent estimates suggest that the mantle wedge is heterogeneously serpentinized (generally 20-30%). This serpentinization is believed to cause a significant weakening of the mantle wedge and therefore may critically control the depth of interplate seismogenic coupling. However, data constraining mechanisms driving deep (50-200km) fluid circulation are lacking and fluid-rock interaction processes remain weakly constrained at the km-scale. We herein propose a new fluid migration algorithm based on thermodynamic modelling (PerpleX) where fluids are free to migrate, driven by rock fluid concentration, non-lithostatic pressure gradients and deformation. Oceanic subduction is modelled using a forward visco-elasto-plastic thermomechanical code (FLAMAR algorithm) based on previous work by Yamato et al. (2007). After 15 Ma of convergence between the two plates, we show that deformation is accommodated along a low-strength shear zone in the wall of the subduction thrust interface, characterized by a weak (10-25% serp.) and relatively narrow (between 3-6km) serpentinized front/channel. Our results also show that dehydration associated with eclogitization of oceanic crust (60-75km) and serpentinite breakdown (110- 130km) significantly weakens the mantle wedge at these depths, thereby favouring deep sedimentary accretion in the deep mantle wedge. We finally show that dehydration causes significant fluid overpressures in the downgoing oceanic lithosphere. These results bring new critical constraints on the location of intermediate-depth seismicity and dehydration-embrittlement processes reported by geophysical studies.
- Published
- 2012
6. Effect of Fluid Circulation on Intermediate Depth Subduction Dynamics: From Field Observations to Numerical Modelling
- Author
-
Wolf, Sylvie, Angiboust, Samuel, Burov, Evgenii, Agard, Philippe, Yamato, Philippe, Dubigeon, Isabelle, Institut des Sciences de la Terre de Paris (iSTeP), Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS), Systèmes Tectoniques, Géosciences Rennes (GR), Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre Armoricain de Recherches en Environnement-Centre National de la Recherche Scientifique (CNRS)-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre Armoricain de Recherches en Environnement-Centre National de la Recherche Scientifique (CNRS), and Université de Rennes (UR)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre Armoricain de Recherches en Environnement-Centre National de la Recherche Scientifique (CNRS)-Université de Rennes (UR)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre Armoricain de Recherches en Environnement-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[SDU.STU] Sciences of the Universe [physics]/Earth Sciences ,[SDU.STU]Sciences of the Universe [physics]/Earth Sciences ,ComputingMilieux_MISCELLANEOUS - Abstract
International audience
- Published
- 2011
7. Local time steps for a finite volume scheme
- Author
-
Faille, Isabelle, Nataf, Frédéric, Willien, Françoise, Wolf, Sylvie, IFP Energies nouvelles (IFPEN), Laboratoire Jacques-Louis Lions (LJLL), Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de tectonique (LT), Centre National de la Recherche Scientifique (CNRS)-Université de Cergy Pontoise (UCP), Université Paris-Seine-Université Paris-Seine-Institut national des sciences de l'Univers (INSU - CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Cergy Pontoise (UCP), and Université Paris-Seine-Université Paris-Seine-Centre National de la Recherche Scientifique (CNRS)
- Subjects
domain decomposition ,local time step ,65Nxx ,FOS: Mathematics ,Numerical Analysis (math.NA) ,Mathematics - Numerical Analysis ,finite volume ,[MATH.MATH-NA]Mathematics [math]/Numerical Analysis [math.NA] - Abstract
We present a strategy for solving time-dependent problems on grids with local refinements in time using different time steps in different regions of space. We discuss and analyze two conservative approximations based on finite volume with piecewise constant projections and domain decomposition techniques. Next we present an iterative method for solving the composite-grid system that reduces to solution of standard problems with standard time stepping on the coarse and fine grids. At every step of the algorithm, conservativity is ensured. Finally, numerical results illustrate the accuracy of the proposed methods.
- Published
- 2008
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.