1. Phase transitions, hysteresis, and hyperbolicity for self-organized alignment dynamics
- Author
-
Liu, Jian-Guo, Frouvelle, Amic, Degond, Pierre, Institut de Mathématiques de Toulouse UMR5219 (IMT), Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Toulouse 1 Capitole (UT1), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS), CEntre de REcherches en MAthématiques de la DEcision (CEREMADE), Centre National de la Recherche Scientifique (CNRS)-Université Paris Dauphine-PSL, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Department of Physics and Department of Mathematics, Duke University [Durham], European Project: 245749,EC:FP7:REGPOT,FP7-REGPOT-2009-1,ACMAC(2010), Université Toulouse Capitole (UT Capitole), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université Toulouse - Jean Jaurès (UT2J), Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS), Université Paris Dauphine-PSL, and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Technology ,Phase transition ,MOTION ,Mathematics, Applied ,01 natural sciences ,critical density ,Mathematics (miscellaneous) ,hydrodynamic limit ,[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph] ,0102 Applied Mathematics ,EQUATION ,Statistical physics ,MACROSCOPIC LIMITS ,Mathematical Physics ,Phase diagram ,Physics ,CONTINUUM-LIMIT ,Mathematical Physics (math-ph) ,010101 applied mathematics ,von Mises-Fisher distribution ,Rate of convergence ,Physical Sciences ,FLOCKING DYNAMICS ,MEAN-FIELD LIMIT ,Analysis of PDEs (math.AP) ,rate of convergence ,Mathematics, Interdisciplinary Applications ,General Physics ,LaSalle's principle ,critical exponent ,math-ph ,alignment interaction ,FOS: Physical sciences ,diffusion limit ,Mechanics ,Stability (probability) ,Measure (mathematics) ,Noise (electronics) ,Spontaneous symmetry breaking ,0101 Pure Mathematics ,self-propelled particles ,math.MP ,Mathematics - Analysis of PDEs ,FOS: Mathematics ,MSC 35L60, 35K55, 35Q80, 82C05, 82C22, 82C70, 92D50 ,[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] ,0101 mathematics ,math.AP ,Science & Technology ,bepress|Physical Sciences and Mathematics|Mathematics ,Mechanical Engineering ,010102 general mathematics ,Vicsek model ,Function (mathematics) ,stability ,MODEL ,Hysteresis ,DRIVEN PARTICLES ,Mathematics ,SYSTEM ,Analysis - Abstract
We provide a complete and rigorous description of phase transitions for kinetic models of self-propelled particles interacting through alignment. These models exhibit a competition between alignment and noise. Both the alignment frequency and noise intensity depend on a measure of the local alignment. We show that, in the spatially homogeneous case, the phase transition features (number and nature of equilibria, stability, convergence rate, phase diagram, hysteresis) are totally encoded in how the ratio between the alignment and noise intensities depend on the local alignment. In the spatially inhomogeneous case, we derive the macroscopic models associated to the stable equilibria and classify their hyperbolicity according to the same function., Archive for Rational Mechanics and Analysis (2014) accepted
- Published
- 2015
- Full Text
- View/download PDF