1. Phenomic selection in wheat breeding: prediction of the genotype-by-environment interaction in multi-environment breeding trials
- Author
-
Pauline Robert, Ellen Goudemand, Jérôme Auzanneau, François-Xavier Oury, Bernard Rolland, Emmanuel Heumez, Sophie Bouchet, Antoine Caillebotte, Tristan Mary-Huard, Jacques Le Gouis, Renaud Rincent, Génétique Quantitative et Evolution - Le Moulon (Génétique Végétale) (GQE-Le Moulon), AgroParisTech-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Génétique Diversité et Ecophysiologie des Céréales (GDEC), Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Clermont Auvergne (UCA), Agri-obtention (AO), SAS Florimond Desprez Veuve and Fils, Partenaires INRAE, Institut de Génétique, Environnement et Protection des Plantes (IGEPP), Université de Rennes (UR)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut Agro Rennes Angers, Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro), Domaine expérimental de Brunehaut (LILL MONS UE), Institut National de la Recherche Agronomique (INRA), MIA, and ANRT, Grant Number 2019/0060)
- Subjects
Genotype ,Models, Genetic ,[SDV]Life Sciences [q-bio] ,General Medicine ,Phenomic selection (PS) ,Plant breeding ,Multi-Environment Trial (MET) ,Triticum aestivum.Bread wheat ,[SDV.GEN.GPL]Life Sciences [q-bio]/Genetics/Plants genetics ,[SDV.BV.AP]Life Sciences [q-bio]/Vegetal Biology/Plant breeding ,Phenotype ,Near infrared spectroscopy (NIRS) ,Genetics ,Genomic selection (GS) ,Gene-Environment Interaction ,Genotype by environment interaction (GxE) ,Phenomics ,Selection, Genetic ,Edible Grain ,Agronomy and Crop Science ,Genome, Plant ,Triticum ,Biotechnology - Abstract
International audience; Key message Phenomic prediction of wheat grain yield and heading date in different multi-environmental trial scenarios is accurate. Modelling the genotype-by-environment interaction effect using phenomic data is a potentially low-cost complement to genomic prediction. The performance of wheat cultivars in multi-environmental trials (MET) is difficult to predict because of the genotype-by-environment interactions (G x E). Phenomic selection is supposed to be efficient for modelling the G x E effect because it accounts for non-additive effects. Here, phenomic data are near-infrared (NIR) spectra obtained from plant material. While phenomic selection has recently been shown to accurately predict wheat grain yield in single environments, its accuracy needs to be investigated for MET. We used four datasets from two winter wheat breeding programs to test and compare the predictive abilities of phenomic and genomic models for grain yield and heading date in different MET scenarios. We also compared different methods to model the G x E using different covariance matrices based on spectra. On average, phenomic and genomic prediction abilities are similar in all different MET scenarios. Better predictive abilities were obtained when G x E effects were modelled with NIR spectra than without them, and it was better to use all the spectra of all genotypes in all environments for modelling the G x E. To facilitate the implementation of phenomic prediction, we tested MET designs where the NIR spectra were measured only on the genotype-environment combinations phenotyped for the target trait. Missing spectra were predicted with a weighted multivariate ridge regression. Intermediate predictive abilities for grain yield were obtained in a sparse testing scenario and for new genotypes, which shows that phenomic selection is an efficient and practicable prediction method for dealing with G x E.
- Published
- 2022