1. Utilisation d'approches de métabarcoding et de métagénomique pour l'analyse de communautés microbiennes suboxiques
- Author
-
Reboul, Guillaume, Ecologie Systématique et Evolution (ESE), AgroParisTech-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Université Paris-Saclay, Purificación López-García, and David Moreira
- Subjects
[SDV.BID.EVO]Life Sciences [q-bio]/Biodiversity/Populations and Evolution [q-bio.PE] ,[SDV.BID.SPT]Life Sciences [q-bio]/Biodiversity/Systematics, Phylogenetics and taxonomy ,[SDV.BIBS]Life Sciences [q-bio]/Quantitative Methods [q-bio.QM] ,Microbial ecology ,[SDV.EE.ECO]Life Sciences [q-bio]/Ecology, environment/Ecosystems ,Grotte de Movile ,Metabarcoding ,Environement suboxiques ,Metagenomics ,Suboxic environments ,Métabarcoding ,Lake Baikal ,Movile cave ,Lac Baikal ,Écologie microbienne ,Métagénomique - Abstract
Microbial ecology is the science of micro-organisms and their biotic and abiotic interactions in a given ecosystem. As technology has advanced, molecular techniques have been widely used to overcome the limitations of classical approaches such as culturing and microscopy. Indeed, the development of Next Generation Sequencing (NGS) technologies in the past twenty years has largely helped to unravel the phylogenetic diversity and functional potential of microbial communities across ecosystems.Nonetheless, most of the environments studied through these techniques concentrated on relatively easily accessible, tractable and host-related ecosystems such as plankton (especially in marine ecosystems), soils and gut microbiomes. This has contributed to the rapid accumulation of a wealth of environmental diversity and metagenomic data along with advances in bioinformatics leading to the development of myriads of tools. Oxygen-depleted environments and especially their microbial eukaryote components are less studied and may lead to future phylogenetic and metabolic discoveries.In order to address this, we conducted analyses on two poorly studied suboxic ecosystems: Movile Cave (Romania) and lake Baikal sediments (Siberia, Russia). In this task, we aimed at unveiling the taxonomic and functional diversity of microorganims in these environments.To do so, I first evaluated the available bioinformatics tools and implemented a bioinformatics pipeline for 16S/18S rRNA gene-based metabarcoding analysis, making reasoned methodological choices. Then, as a case study, I carried out metabarcoding analyses of the water and floating microbial mats found in Movile Cave in order to investigate its protist diversity. Our study showed that Movile Cave, a sealed off chemosynthetic ecosystem, harbored a substantial protist diversity with species spanning most of the major eukaryotic super groups. The majority if these protists were related to species of freshwater and marine origins. Most of them were putatively anaerobic, in line with the cave environment, and suggesting that in addition to their predatory role, they might participate in prokaryote-protist symbioses.In a second study, I applied my metabarcoding pipeline to explore unique and relatively unexplored environment of Lake Baikal sediments. I first applied a metabarcoding approach using 16S and 18S rRNA genes to describe prokaryotic as well as protist diversity. Overall, the communities within these ecosystems were very diverse and enriched in ammonia-oxidizing Thaumarchaeota. We also identified several typical marine taxa which are likely planktonic but accumulate in sediments. Finally, our sampling plan allowed us to test whether differences across depth, basin or latitude affected microbial community structure. Our results showed that the composition of sediment microbial communities remained relatively stable across the samples regardless of depth or latitude.In a third study, we applied metagenomics to study the metabolic potential of communities associated to Baikal sediments and to reconstruct metagenome-assembled genomes (MAGs) of dominant organisms. This revealed the considerable ecological importance of Thaumarchaeota lineages in lake Baikal sediments, which were found to be the major autotrophic phyla and also very implicated in the nitrogen cycle. Chloroflexi and Proteobacteria-related species also appeared ecologically important.This PhD thesis reveals the taxonomic diversity of poorly studied suboxic ecosystems and therefore contributes to our knowledge of microbial diversity on Earth. Additionally, the analyses of surface sediment samples in lake Baikal adds new light on freshwater-marine transitions. The metagenomic analyses reported here allowed us to postulate a model of nutrient cycle carried out by microorganismsin these sediments. Overall, this work sheds light on the microbial ecology of oxygen-depleted environments, and most notably lake Baikal surface sediments.; L’écologie microbienne concerne l’étude des microorganismes et de leurs interactions biotiques et abiotiques dans un écosystème donné. Ces vingt dernières années, l’avancement des techniques moléculaires pour analyser la diversité microbienne et, notamment, les nouvelles technologies de séquençages (NGS) ont permis de surmonter les limitations associées aux approches traditionnelles basées sur la culture et la microscopie. Ces approches moléculaires ont conduit à une accumulation des données de diversité microbienne et de potentiel métabolique dans des communautés microbiennes des écosystèmes variés.Cependant, ces efforts ont été principalement appliqués sur des environnements facilement accessibles ou liés à l’humain, comme le plancton (marin principalement) et la flore intestinale. Néanmoins, ceci a conduit à une très forte augmentation de données environnementales et au développement de la bioinformatique par le biais de nombreux outils. Parmi les environnements délaissés des études, les environnements faibles en oxygène sont probablement également porteurs de nouveautés phylogénique ou métaboliques.Afin de palier à cela, nous avons choisi d’explorer deux environnements suboxiques relativement peu étudiés : la cave Movile (Roumanie) et les sédiments du lac Baikal (Sibérie, Russie). Notre but étant de montrer les diversités phylogénétiques et fonctionnelles des microbes de ces biotopes.Pour cela, j’ai d'abord développé un pipeline d’analyse de données métabarcoding (petite sous-unités ribosomique). Ensuite, j’ai appliqué cet outil sur des données de métabarcoding de protistes provenant d’échantillons d’eau et de tapis microbiens de la cave de Movile, un écosystème chemosynthétique pratiquement fermé. Nous avons montré que la diversité des protistes de la cave s’étendait à quasiment tous les grands groupes eucaryotes et provenait à la fois d’origine d’eaux douces et marines. De plus, la plupart ont été affiliées à des groupes d’organismes typiquement anaérobies, ce qui est concordant avec les paramètres abiotiques de la cave. Écologiquement, ces protistes sont des prédateurs mais aussi vraisemblablement des partenaires symbiotiques avec des espèces procaryotes de la cave.Dans une deuxième étude, j’ai eu l’opportunité d’appliquer ce pipeline de métabarcoding sur des données procaryotes et eucaryotes provenant des couches superficielles des sédiments du lac d’eau douce Baikal. Comme attendu, les communautés microbiennes dans ces sédiments sont particulièrement diverses et relativement enrichis en archées. Nous avons aussi pu mettre en évidence des lignées que l’on pensait exclusivement marines dans ces sédiments. Ces lignées sont probablement planctoniques mais s’accumulent au fond par sédimentation. Enfin, les échantillons ont été prélevés dans le but de tester les influences de la profondeur, du bassin et de la latitude sur les communautés. Aucune d’elles ne s’est révélée significative.Dans une troisième étude, j'ai utilisé une approche métagénomique afin de révéler les acteurs écologiquement majeurs dans les sédiments, leurs rôles et de reconstruire leurs génomes. Cela nous a permis notamment de mettre en évidence le rôle primordial des Thaumarchaeota dans le cycle de l’azote et la production primaire de molécules de carbone. Les chloroflexi et les protéobacteries ont aussi un rôle important dans la surface des sédiments du lac Baikal. Ce travail de thèse participe à la connaissance globale de la diversité microbienne sur la planète en mettant en lumière des environnements peu étudiés. De plus, l’étude de la surface des sédiments du lac Baikal apporte de nouvelles données sur le sujet de la transition eau douces/eau marines des microbes. Enfin, la métagénomique a permis de révéler le cycle des nutriments et les microorganismes y participant dans ces échantillons de sédiment. En résumé, ce travail vient mettre en lumière l’écologie microbienne d’écosystèmes suboxiques, notamment la surface des sédiments du lac Baikal.
- Published
- 2020