1. Are Load-Velocity Estimates of Bench Press Maximal Strength as Accurate as Actual 1-Repetition Maximum Testing?
- Author
-
Cabarkapa DV, Fry AC, Kavadas NG, and Cabarkapa D
- Abstract
Abstract: Cabarkapa, DV, Fry, AC, Kavadas, NG, and Cabarkapa, D. Are load-velocity estimates of bench press maximal strength as accurate as actual 1-repetition maximum testing? J Strength Cond Res XX(X): 000-000, 2024-The purpose of the present investigation was to determine if using maximal velocity measures while lifting submaximal loads as a predictor of bench press maximal strength (i.e., 1 repetition maximum [1RM]) is more accurate than the actual 1RM test and determine which specific submaximal loads best estimate 1RM bench press strength with the lowest variability when compared with actual 1RM tests. Sixteen recreationally trained subjects performed 5 testing sessions. The first and second sessions included the actual 1RM bench press testing, whereas the remaining 3 sessions consisted of performing one repetition of a bench press exercise in a series of incremental loads, starting at 20% 1RM and increasing the resistance by 10% until reaching the 90% of individual's 1RM. For each participant, linear regressions using bar velocities at each relative load were used to estimate 1RM capabilities, using the predetermined 1RM barbell velocities from actual 1RM testing. The results of the present investigation indicated the following: (a) actual bench press 1RM can be a highly reliable assessment of maximal strength; (b) having a greater number of loads included in the equations increases the accuracy of 1RM estimation; (c) practitioners should incorporate light (e.g., 20% 1RM) and heavy (e.g., 80 and/or 90% 1RM) loads when estimating 1RM from load-velocity profiles; and (d) most load-velocity regression equations for estimating strength are not as accurate as actual 1RM tests for the free-weight bench press. Those who use load-velocity testing to estimate 1RM strength must be willing to accept the accompanying error for most loading protocols., (Copyright © 2024 National Strength and Conditioning Association.)
- Published
- 2024
- Full Text
- View/download PDF