1. Tracking Control of Overhead Crane Using Output Feedback With Adaptive Unscented Kalman Filter and Condition-Based Selective Scaling
- Author
-
Jaehoon Kim, Balint Kiss, Donggil Kim, and Dongik Lee
- Subjects
Overhead crane ,feedback linearization ,flatness based control ,adaptive unscented Kalman filter ,condition-based selective scaling ,Electrical engineering. Electronics. Nuclear engineering ,TK1-9971 - Abstract
Most of the advanced nonlinear control strategies reported in the literature for underactuated mechanisms, such as overhead cranes, require the knowledge of all state variables. For cranes, the state vector includes variables related to the load sway and its velocity. The flatness property of crane-like systems can be exploited to solve both motion planning and tracking problems, so that the load (whose coordinates are included in the set of the flat outputs) exponentially follows a rapid reference trajectory. However, unmodeled friction phenomena and limitations on the direct measurement of sway-related state variables usually impede the practical implementation of flatness-based control laws. This paper proposes the use of an adaptive unscented Kalman filter to estimate friction forces and unmeasured state variables. The convergence of the filter is improved using a novel technique, called condition-based selective scaling. The performance of the suggested scheme is verified through a set of computer simulations on a 2D overhead crane system.
- Published
- 2021
- Full Text
- View/download PDF