1. Bayesian Estimation of Turbulent Motion.
- Author
-
Héas, Patrick, Herzet, Cédric, Mémin, Etienne, Heitz, Dominique, and Mininni, Pablo D.
- Subjects
- *
MOTION estimation (Signal processing) , *TURBULENT flow , *MATHEMATICAL regularization , *OPTICAL flow , *MATHEMATICAL symmetry , *BAYESIAN analysis , *CONSTRAINED optimization - Abstract
Based on physical laws describing the multiscale structure of turbulent flows, this paper proposes a regularizer for fluid motion estimation from an image sequence. Regularization is achieved by imposing some scale invariance property between histograms of motion increments computed at different scales. By reformulating this problem from a Bayesian perspective, an algorithm is proposed to jointly estimate motion, regularization hyperparameters, and to select the most likely physical prior among a set of models. Hyperparameter and model inference are conducted by posterior maximization, obtained by marginalizing out non--Gaussian motion variables. The Bayesian estimator is assessed on several image sequences depicting synthetic and real turbulent fluid flows. Results obtained with the proposed approach exceed the state-of-the-art results in fluid flow estimation. [ABSTRACT FROM AUTHOR]
- Published
- 2013
- Full Text
- View/download PDF