1. Multimodal Renewable Energy Hybrid Supply Optimization Model Based on Heterogeneous Cloud Wireless Access
- Author
-
Feng Tian, Hongjiang Wang, He Jiang, and Baida Zhao
- Subjects
K-clustering algorithm ,heterogeneous cloud radio access ,particle swarm optimization algorithm ,WOA algorithm ,energy supply optimization ,Electrical engineering. Electronics. Nuclear engineering ,TK1-9971 - Abstract
With the increasing emphasis on environmental issues, the utilization of renewable energy has been recognized as a feasible solution to address the energy crisis and reduce environmental pollution. In view of this, this article proposes a multi-modal renewable energy hybrid power supply optimization model based on heterogeneous cloud wireless access. The model innovatively combines heterogeneous cloud wireless access technology and various intelligent optimization algorithms, including k-clustering algorithm, particle swarm optimization algorithm, and whale optimization algorithm, forming a hybrid optimization algorithm. In order to comprehensively evaluate the actual performance of the model, this study recruited 20 experts to provide detailed ratings on four core dimensions: cost-benefit ratio, reliability, robustness, and user satisfaction. The results showed that the model scored 95.1, 96.4, 95.6, and 96.2 in the four dimensions of cost-benefit ratio, reliability indicators, robustness, and user satisfaction, respectively. This series of significant data not only confirms the theoretical superiority of the model, but also demonstrates its strong potential and practical value in practical applications. In summary, this study provides a promising and innovative solution for the field of renewable energy supply.
- Published
- 2024
- Full Text
- View/download PDF