2 results on '"Jalal Fadili"'
Search Results
2. Image Decomposition and Separation Using Sparse Representations: An Overview
- Author
-
M. Jalal Fadili, Yassir Moudden, Jean-Luc Starck, Jérôme Bobin, Equipe Image - Laboratoire GREYC - UMR6072, Groupe de Recherche en Informatique, Image et Instrumentation de Caen (GREYC), Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS)-Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS), Département d'Electronique, des Détecteurs et d'Informatique pour la Physique (ex SEDI) (DEDIP), Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Centre National de la Recherche Scientifique (CNRS)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Normandie Université (NU)-Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), and Normandie Université (NU)
- Subjects
Theoretical computer science ,Iterative method ,Computer science ,Image processing ,02 engineering and technology ,Blind signal separation ,Sparse representations ,[INFO.INFO-TS]Computer Science [cs]/Signal and Image Processing ,blind source separation ,0202 electrical engineering, electronic engineering, information engineering ,Source separation ,Electrical and Electronic Engineering ,Signal processing ,image decomposition ,business.industry ,020206 networking & telecommunications ,Pattern recognition ,Image segmentation ,Sparse approximation ,Independent component analysis ,[INFO.INFO-TI]Computer Science [cs]/Image Processing [eess.IV] ,020201 artificial intelligence & image processing ,Artificial intelligence ,business ,[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processing ,morphological component analysis - Abstract
International audience; This paper gives essential insights into the use of sparsity and morphological diversity in image decomposition and source separation by overviewing our recent work in this field. The idea to morphologically decompose a signal into its building blocks is an important problem in signal processing and has far-reaching applications in science and technology. Starck et al. [1], [2] proposed a novel decomposition method - Morphological Component Analysis (MCA) - based on sparse representation of signals. MCA assumes that each (monochannel) signal is the linear mixture of several layers, the so-called Morphological Components, that are morphologically distinct, e.g. sines and bumps. The success of this method relies on two tenets: sparsity and morphological diversity. That is, each morphological component is sparsely represented in a specific transform domain, and the latter is highly inefficient in representing the other content in the mixture. Once such transforms are identified, MCA is an iterative thresholding algorithm that is capable of decoupling the signal content. Sparsity and morphological diversity have also been used as a novel and effective source of diversity for blind source separation (BSS), hence extending the MCA to multichannel data. Building on these ingredients, we will overview the Generalized MCA (GMCA) introduced by the authors in [3], [4] as a fast and efficient BSS method. We will illustrate the application of these algorithms on several real examples. We conclude our tour by briefly describing our software toolboxes made available for download on the Internet for sparse signal and image decomposition and separation.
- Published
- 2010
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.