1. A Self-Supervised Learning Based Channel Attention MLP-Mixer Network for Motor Imagery Decoding
- Author
-
Yanbin He, Zhiyang Lu, Jun Wang, Shihui Ying, and Jun Shi
- Subjects
Motor imagery ,electroencephalography ,self-supervised learning ,multi-layer perceptron ,channel attention ,Medical technology ,R855-855.5 ,Therapeutics. Pharmacology ,RM1-950 - Abstract
Convolutional Neural Network (CNN) is commonly used for the Electroencephalogram (EEG) based motor-imagery (MI) decoding. However, its performance is generally limited due to the small size sample problem. An alternative way to address such issue is to segment EEG trials into small slices for data augmentation, but this approach usually inevitably loses the valuable long-range dependencies of temporal information in EEG signals. To this end, we propose a novel self-supervised learning (SSL) based channel attention MLP-Mixer network (S-CAMLP-Net) for MI decoding with EEG. Specifically, a new EEG slice prediction task is designed as the pretext task to capture the long-range information of EEG trials in the time domain. In the downstream task, a newly proposed MLP-Mixer is applied to the classification task for signals rather than for images. Moreover, in order to effectively learn the discriminative spatial representations in EEG slices, an attention mechanism is integrated into MLP-Mixer to adaptively estimate the importance of each EEG channel without any prior information. Thus, the proposed S-CAMLP-Net can effectively learn more long-range temporal information and global spatial features of EEG signals. Extensive experiments are conducted on the public MI-2 dataset and the BCI Competition IV Dataset 2A. The experimental results indicate that our proposed S-CAMLP-Net achieves superior classification performance over all the compared algorithms.
- Published
- 2022
- Full Text
- View/download PDF