1. Lipoprotein-associated phospholipase A2: a novel marker of cardiovascular risk and potential therapeutic target
- Author
-
Colin H. Macphee, Yi Shi, Andrew Zalewski, and G Martin Benson
- Subjects
Pathology ,medicine.medical_specialty ,Inflammation ,Disease ,Biology ,Bioinformatics ,Phospholipases A ,Drug Delivery Systems ,Risk Factors ,medicine ,Animals ,Humans ,Pharmacology (medical) ,Enzyme Inhibitors ,Pharmacology ,Phospholipase A ,Lipoprotein-associated phospholipase A2 ,General Medicine ,medicine.disease ,1-Alkyl-2-acetylglycerophosphocholine Esterase ,Enzyme assay ,Residual risk ,Phospholipases A2 ,Atheroma ,Cardiovascular Diseases ,biology.protein ,lipids (amino acids, peptides, and proteins) ,medicine.symptom ,Biomarkers - Abstract
Although the clinical benefit of statins is well established, these agents reduce the risk of cardiovascular events by only 20 - 40%, and the residual risk for high-risk patients is considerable. The recognition of atherosclerosis as an inflammatory disease has opened the door to numerous complementary therapeutic approaches to further reduce risk and the overall burden of cardiovascular disease. Lipoprotein-associated phospholipase A(2) (Lp-PLA(2)) is a novel inflammatory marker of cardiovascular risk that is being evaluated as a potential therapeutic target. The biological function of this enzyme in atherosclerosis has been controversial but recent evidence supports its pro-atherogenic role. The enzyme is predominantly bound to low-density lipoprotein cholesterol particles in humans, and its activity produces bioactive lipid mediators that promote inflammatory processes present at every stage of atherogenesis, from atheroma initiation to plaque destabilisation and rupture. Initial clinical studies suggest that the inhibitors of Lp-PLA(2) can block enzyme activity in plasma and within atherosclerotic plaques. However, more studies are needed to determine the potential clinical benefits of inhibiting Lp-PLA(2).
- Published
- 2005
- Full Text
- View/download PDF