1. Confinement Studies In TFTR
- Author
-
Robert James Goldston, A. Wouters, D.J. Grove, J. Sinnis, J.D. Callen, V. Arunasalam, H.W. Hendel, J. Coonrod, F. J. Stauffer, M. Williams, S. Sesnic, R. Little, R. Kaita, A.C. England, L.C. Emerson, S. D. Scott, David A Rasmussen, H. F. Dylla, M. C. Zarnstorff, H.W. Kugel, L. C. Johnson, D. K. Owens, S. von Goeler, P. C. Efthimion, C.E. Thomas, Joseph L. Cecchi, R. M. Wieland, G. D. Tait, H. H. Towner, C. E. Bush, A. L. Roquemore, P. H. LaMarche, R. Hulse, Szymon Suckewer, D. R. Mikkelsen, A. T. Ramsey, K. McGuire, H. Yamada, D. Dimock, J.F. Schivell, Manfred Bitter, N. R. Sauthoff, Eric Fredrickson, E. Nieschmidt, M. Kikuchi, Hyeon K. Park, D. A. Boyd, Dennis M. Manos, M. Shimada, Stanley Kaye, C.H. Ma, D. K. Mansfield, P.H. Rutherford, D. C. McCune, David W. Johnson, B. Grek, D. Mueller, G. Taylor, J. H. Kamperschroer, S. J. Kilpatrick, K-L. Wong, B. Prichard, Dale Meade, N. Bretz, S. Yoshikawa, Harold P. Furth, H.P. Eubank, V.K. Pare, R. J. Fonck, Brentley Stratton, R. T. McCann, M. G. Bell, K. W. Hill, R.J. Colchin, W. R. Blanchard, M. Ulrickson, M. McCarthy, J. E. Simpkins, K. M. Young, F. Tenney, J.D. Bell, M. Murakami, L. R. Grisham, R. J. Hawryluk, S. S. Medley, F.P. Boody, J-L. Schwob, and S. L. Davis
- Subjects
Physics ,Scaling law ,Plasma heating ,020209 energy ,General Engineering ,Plasma confinement ,Ion temperature ,02 engineering and technology ,01 natural sciences ,Neutral beam injection ,010305 fluids & plasmas ,0103 physical sciences ,Stored energy ,0202 electrical engineering, electronic engineering, information engineering ,Atomic physics - Abstract
The paper describes the present (end of February 1985) status of the plasma confinement studies in the TFTR tokamak with emphasis on those with neutral beam injection (NBI). Recent improvements in the device capabilities have substantially extended operating parameters: B /sub T/ increased to 4.0 T, I /sub p/ to 2.0 MA, injection power (P /sub b/ ) to /sup 5/ MW with H/sup 0/ or D/sup 0/ beams, n /sub e/ to 5 x 10/sup 19/ m/sup -3/ and Z /sub eff/ reduced to 1.4. With ohmic heating (OH) alone, the previously established scaling for gross energy confinement time (T /sub E/ /sup 0/ n /sub e/ q) has been confirmed at higher I /sub p/ and B /sub T/ , and the maximum T /sub E/ of 0.4 sec has been achieved. With NBI at P /sub b/ substantially (by factor > 2) higher than P /sub OH/ , excellent power and particle accountability have been established. This suggest that the less-than-expected increase in stored energy with NBI is not due to problems of power delivery, but due to problems of confinement deterioration. T /sub E/ is observed to scale approximately as I /sub p/ P /sub b/more » /sup 0.5/ (independent of n /sub e/ ), consistent with previous L-mode scalings. With NBI we have achieved the maximum T /sub E/ of 0.2 s and the maximum T /sub i/ (o) of 4.4 keV in the normal operating regime, and even higher T /sub i/ (o) in the energetic-ion regime with low-n /sub e/ and low I /sub p/ operation.« less
- Published
- 1985
- Full Text
- View/download PDF