This study is conducted to find the conditions required to synthesize composite material for cesium (134Cs+) removal from the generated liquid waste associated with nuclear, medical, industrial, and/or research activities. The study shows that the optimum conditions required for synthesizing “Poly [acrylamide (AM)-itaconic acid (IA)]/N,N′-methylenediacrylamide (DAM)/Zirconium tungstate (ZrW)” or “Poly(AM-IA)/DAM/ZrW” are 0.01 g DAM dose as a cross-linker, a co-monomer concentration of 20%, a co-monomer composition (AM-IA) (12:88), and 0.03 g (melted at 450 °C–500 °C) ZrW with gamma irradiation dose of 30 kGy. The composite material was characterized by Fourier infrared (FTIR), X-ray diffraction (XRD), thermal gravimetric analysis (TGA), differential thermal analysis (DTA), scanning electron microscope (SEM), and Brunauer-Emmett-Teller (BET) surface area measurements. The adsorption performance of the composite was investigated. The maximum removal efficiency of 134Cs+ ions was found to be 93% in m...