1. Tracking of spawning targets with multiple finite resolution sensors
- Author
-
Chen, Huimin, Kirubarajan, Thiagalingam, and Bar-Shalom, Yaakov
- Subjects
Algorithms -- Usage ,Sensors -- Design and construction ,Tracking systems -- Design and construction ,Algorithm ,Aerospace and defense industries ,Business ,Computers ,Electronics ,Electronics and electrical industries - Abstract
In this paper the problem of tracking multiple spawning targets with multiple finite-resolution sensors is considered and a new algorithm for measurement-to-track association with possibly unresolved measurements is presented. The goal is to initialize new tracks of spawned targets before they are resolved from the mother platform so that one has the ability to carry out early discrimination when they become resolved. The multiple scan data association problem is first formulated as a multidimensional assignment problem with explicit new constraints for the unresolved measurements. Then the top M hypotheses tracking (TMHT) is presented where the state estimates and their covariances are modified based on the M best hypotheses through the assignment solutions. A modification to the assignment problem is developed that leads to a linear programming (LP) where the optimal solution can be a noninteger in [0, 1]. The fractional optimal solution is interpreted as (pseudo) probabilities over the N - 1 frame sliding window. The best hard (binary) decision assignment solution and the M best via TMHT are compared with the soft decision solution for 2-D tracking scenarios with various sensor configurations. Based on the simulation results, the soft assignment approach has better track maintenance capability than the single best hard assignment and a performance nearly as good as the TMHT. Its computational load is slightly higher than the single best hard assignment but much lighter than TMHT.
- Published
- 2008