1. Fault Diagnosis of Rotating Machinery Based on Wasserstein Distance and Feature Selection
- Author
-
Alessandro Freddi, Andrea Monteriù, Francesco Ferracuti, and Luca Romeo
- Subjects
Vibration ,Distribution (mathematics) ,Control and Systems Engineering ,Computer science ,Component (UML) ,Order statistic ,Feature selection ,Electrical and Electronic Engineering ,Fault (power engineering) ,Algorithm ,Selection (genetic algorithm) ,Weighting - Abstract
This article presents a fault diagnosis algorithm for rotating machinery based on the Wasserstein distance. Recently, the Wasserstein distance has been proposed as a new research direction to find better distribution mapping when compared with other popular statistical distances and divergences. In this work, first, frequency- and time-based features are extracted by vibration signals, and second, the Wasserstein distance is considered for the learning phase to discriminate the different machine operating conditions. Specifically, the 1-D Wasserstein distance is considered due to its low computational burden because it can be evaluated directly by the order statistics of the extracted features. Furthermore, a distance weighting stage based on neighborhood component features selection (NCFS) is exploited to achieve robust fault diagnosis at low signal-to-noise ratio (SNR) conditions and with high-dimensional features. In detail, the NCFS framework is here adapted to weight 1-D Wasserstein distances evaluated from time/frequency features. Experiments are conducted on two benchmark data sets to verify the effectiveness of the proposed fault diagnosis method at different SNR conditions. The comparison with state-of-the-art fault diagnosis algorithms shows promising results.
- Published
- 2022
- Full Text
- View/download PDF